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1. INTRODUCTION

IT 18 now almost 50 years since BECKER (1925) and OROWAN (1934) first
suggested that the non-linear resistance to deformation of solids (in distinction
to the linear-viscous resistance of most liquids) derives from the much-larger-
than-atomic-size flow units in the solid. In the language of BECKER and
OROWAN, the larger-size flow units in plastic deformation produce large
internal concentrations of the applied stress where thermally activated pro-
duction of new flow units becomes easy. In contemporary language, the rate
process in plastic deformation derives from the thermally activated motion of
crystal dislocations over local slip plane obstacles at which the bowing of a
single dislocation or the cooperative motion of many dislocations can strongly
concentrate the applied stress.

The ideas of BECKER and OROWAN were developed and extended by ORowAN
(1940), KAUZMANN (1941), SEEGER (1954) and FRrIEDEL (1956); since then, a
rapidly expanding body of literature has appeared on the subject. Much of
this has focused on the experimental and theoretical investigation of the
thermally activated motion of single dislocations past obstacles that obstruct
. their glide motion in a single slip plane. As a result it is now possible to char-
acterize experimentally, at least in broad outline, the various slip plane
obstacles governing the rate process. In this treatise we present a comprehen-
sive and self-consistent approach to thermal analysis of plastic slip, starting
from basic principles of the motion of a single dislocation through a given
topography of slip plane obstacles and concluding with a detailed discussion
of the macroscopic properties of a crystal containing a given distribution of
microscopic obstacles to flow.

The total mechanical behavior of a material is described by a constitutive
law: a set of equations relating strain rate ¢, to stresses o, j» rates of change of
stress ¢y;, temperature T, and—through a number of structure parameters S,,
S2, S, etc., such as dislocation density (or various moments of it), grain size,
and so on—to the thermo-mechanical history of the material. In differential
~ form, a constitutive law may be written as a set of coupled differential
equations:

él] = f(O‘”, élb Tr Sl’ S23 S3, .. -), ' [la]

dSl == fl(o'”, d'“, T, Sl’ Sz, S3, PP ) dt,
dS; = fy(ayy, 645, T, Sy, Sa, S, - - ) de, [1b]

dS3 = f3(0'”, d”, T, SI) Sz, S3, .. .) dt

where df is an increment of time. The law is made up of a rate-of-flow equation
(or simply: rate-equation), eq. [1a], and a set of structure-change equations, eqs.
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INTRODUCTION 3

The tensorial rate equation [la] for general stress states follows from this by
a set of geometrical and kinematic relations with which we are not concerned
in this treatise; they have been reviewed elsewhere (Kocks, 1970a).

For the case of single crystals deforming, under simple boundary condi- .
tions, by slip on a single slip system, eq. [1c] already represents the entire
constitutive law. Under more complicated boundary conditions, and for poly-
crystalline specimens, additional relations are needed. These are well estab-
lished for some materials, such as face-centered cubic and body-centered
cubic metals deforming in a quasi-homogeneous manner (Kocks, 1970a). For
other materials, the problem of relating macroscopic flow to slip on a single
slip system may yet have to be solved; but, so lung as slip is the underlying
process, eq. [1c] will describe the kinetic law for all materials. In this sense,
thermally activated flow of non-metallic elements, of inorganic compounds,
and of molecular crystals, as well as metals and alloys, can all be treated in
the manner set out below; we have further found a modification of it to be
helpful in understanding flow in polymers and glassy solids.

In Chapter 2, we start by considering equilibrium conditions for dislocations
in a slip plane; these lead to the definition of various forces on dislocations
(per unit length). The force opposing the motion of a straight test element of
dislocation at any position in the slip plane is called the element glide resis-
tance; its contour reflects all relevant properties of the obstacles to dislocation
motion. When a flexible dislocation is placed in the slip plane and pressed
against the contour of the element glide resistance, by an applied stress, the
dislocation will be locally held up at the high points of the element glide
resistance profile, and bow out in areas where the applied stress exceeds the
local glide resistance, until, primarily through its curvature, it develops enough
self stress to equal the difference between the applied stress and the local
element resistance. This process of smoothing the high points of the element
resistance by the bowing dislocation gives rise to the dislocation line glide
resistance which is the sum of the element resistance and the self stress. In
equilibrium, it must equal the applied stress along the entire length of the
bowed-out dislocation. Conversely, any difference between the applied stress
and the line glide resistance at any point along the length of the dislocation
is the driving force for dislocation motion. A continuous sequence of equili-
brium configurations of a dislocation line in a slip plane may be derived by
demanding that, in every configuration, the line glide resistance be constant
along the dislocation, but allowing that the applied stress with which this line
glide resistance is in equilibrium be different from one configuration to the
next; the resulting contour is the line resistance profile. It has peaks and
valleys which, however, are much less pronounced than those of the element
resistance contour. Finally, even the line resistance contour may be smoothed
out to some extent by dislocations forming groups or following special paths;
we have called this the plane glide resistance. There is an upper limit to the
applied stresses under which equilibrium is possible:.it is the maximum plane
Vit warictnnen o mochanical threshold. Chaptet 2 ends with the discussion




2 THERMODYNAMICS AND KINETICS OF SLIP

[1b]. This is not the only form in which a constitutive law can be written. But
it is one with particular advantages for use as a basis for microscopic modeling
because—in principle, at any rate—it is possible to devise experiments to
investigate each of the functions, f, f;, f,,f5 . . . by studying the microstructure
directly (by transmission microscopy, for example) or indirectly (by studying
x-ray line broadening, for example).

The quantities Sy, S, Ss, . . . define the state of the material: two samples
with the same S;, S;, S3 . . . are in the same state. In general, flow changes
the state so that finite strain can be described only by integrating eqgs. [1a] and
[1b] simultaneously. There is one exception: at sufficiently large strains,
materials show a steady-state flow behavior in which

0=dS,=4dS,=4dS;...
Equations [1b] then become a set of simple simultaneous equations to be
solved for S;, S,, S, etc., which are then substituted into eq. [1a] to give the
strain rate.

The establishment of a constitutive law for a material, or class of materials,
is one of the ultimate goals of the kind of detailed analysis we review here—
but we are still a long way from achieving it. The treatise examines the principles
underlying the calculation of the rate of flow at constant structure—eq. [1a].
We do not discuss the structure-change equations, or the physics of how the
structure evolves with strain, or time. Nor do we consider heterogeneous
deformation (itself frequently a result of structural change) or twinning.
Finally, we restrict ourselves to the range of temperatures in which diffusion,
and diffusion-controlled effects, can be ignored.

Our concern here is to answer the question: given a certain set of micro-
scopic obstacles to slip, how should the macroscopic mechanical properties
be calculated? And alternatively: given a set of macroscopic measurements,
what can we learn from them about the microscopic processes involved ? The
result of thermal analysis, done by abrupt change in the strain-rate, or load,
or temperature, at various points, is a smoothed-out map of the slip plane
obstacles. Of interest is the decomposition of this map into various consti-
tuent processes which in combination give rise to the experimentally measured
obstacle profile. In effect, the experiments furnish the integral processes: what
is desired is the solution of the integral equation. As in the somewhat parallel
case of the properties of gases where, by means of the kinetic theory, one
derives the macroscopic properties of a gas by integrating over the behavior
of molecules, we adopt the approach of constructing the macroscopic
mechanical behavior of crystals by integrating the behavior of individual dis-
locations under the action of the slip plane obstacles, the applied stress, and
other moving dislocations.

Since the motion of individual dislocations furnishes a single component
of strain rate (y), and is primarily controlled by a single component of stress
(0), the kinetic law describing such motion is a single scalar equation of the
kind X
y=6lo,eT S G 5 D el
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_an application of the methods outlined in the following to a number of varied
practical cases should produce the necessary experience.

This treatise is not a review in the simple sense of a literature survey; rather
it is a reworking of the principles involved in calculating a kinetic law for
plastic deformation from a general and, in some respects, new point of view.
Needless to say, we have been profoundly influenced by the vast literature on
this subject, and by numerous stimulating and critical discussions we have had
with colleagues in the field. Although we have made a serious attempt to
furnish references wherever necessary, we feel that in a work of this com-
plexity it is impossible to always give proper credit to the original source. We

are certain that we have failed more than once in this respect and wish,
therefore, to tender apologies to our unintentionally slighted colleagues.
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of the various smoothing processes and the mechanical threshold for several
common slip plane obstacles.

In Chapter 3, we consider the dynamics of individual dislocations, their ‘
inertial mass, and the lattice drag processes which check their velocity. We
consider the continuous glide of dislocations above the mechanical threshold
against the lattice drag as the simplest of superposition problems. Next we
consider kinematics and phenomenological kinetics of the jerky glide of dis-
locations at stresses Jess than the mechanical threshold where the continued
motion of a dislocation requires thermal activation past local obstacles. For
both types of glide, we discuss the mobile dislocation density and its stress
dependence to arrive at expressions for the macroscopic strain rate. We end
the chapter with a summary of phenomenological and empirical kinetic
relations.

In Chapter 4, we discuss the details of the local activation process of a dis-
location based on the theory of thermal fluctuations. To determine the
Jfrequency factor of activation and the activation free energy we consider the
statistical mechanics of the modes of oscillation of a dislocation pressed
against an obstacle. Further, we discuss the stress dependence of the activation
free enthalpy as an obstacle-size-sensitive parameter and give a detailed
application to discrete obstacles. Finally, we consider the limiting form of the
strain-rate expression at very low stresses.

In Chapter 5, we discuss a number of important glide resistance models in
detail, from the element resistance up to the macroscopic strain rate, as guides
for eventual experimental thermal analysis. In this chapter, we are concerned
less with the development of a detailed model for one obstacle type than with
the examination of the model characteristics of certain classes of obstacles.
The chapter discusses specifically the lattice resistance, the glide resistance
due to precipitate particles, and (briefly) that due to dilute solid solutions. It
ends with a short summary of the various forms of superposition of mecha-
nisms.

In Chapter 6, we discuss the rational selection of operational parameters and
the best choices for normalization of these parameters. We then consider in
detail the methods of operational thermal analysis for rate insensitive and rate
sensitive materials based only on some very general mechanistic assumptions.
Finally, we review the principal experimental methods and evaluation pro-
cedures to measure the operational parameters.

In Chapter 7, we attempt to give our assessment of the present understand-
ing of the field: we recount a number of problems that we consider to be
essentially solved, and some that stand out as being worth solving.

The ultimate aim of the entire procedure outlined here would be the pro-
duction of a flow chart that specifies a sequence of experiments, proceeding
from easier ones to harder ones, each one of which narrows down the range
of possible underlying mechanisms and, thereby, the range of possible extra-
polations into other aspects of the mechanical behavior not yet measured.
We feel confident that this aim will be attained in the not-too-distant future:
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in the free energy of the crystal and must be taken account of. We call the
combination of these self stresses with the element resistance the line glide
resistance T ne- It is usually substantially lower than g gm. Finally, disloca-
tions moving across an entire slip plane may smooth out the local line glide
resistances to some extent by forming groups or following special paths. Tke
resulting plane glide resistance tpLane is a material property relevant to large-
scale dislocation movement.

After introducing these three glide resistances in sec. 23, we describe them
specifically for three broad classes of obstacles: linear barriers (sec. 24) and
discrete obstacles (sec. 25), both of which are fixed in the slip plane, and
dragging obstacles (sec. 26). We conclude the chapter with a discussion of the
influence of dislocation dissociation- (sec. 27).

There have been many excellent discussions on the equilibrium properties
of dislocations and basic thermodynamics of glide, which will form a useful
background to our discussion in this chapter. The reader may find the follow-
ing limited selection particularly useful:

EsHeLRY (1951), The Force on an Elastic Singularity;
FrieDeL (1964), Dislocations;

HirTH and LoTHE (1968), Theory of Dislocations;
SEeGER (1955a), Theorie der Gitterfehistellen.

21. THERMODYNAMICS OF STRESSED SOLIDS

The application of thermodynamics to the plastic deformation of solids
requires special caution in a number of respects. First, this deformation is
essentially irreversible. Equilibrium relations are of considerable interest, for
example to define a reference state from which actual deviations constitute a
driving force; but it is important that such relations holding only under
equilibrium conditions (or for reversible changes) be carefully distinguished
from other laws of general validity.

Second, plastic deformation depends sensitively on shear stresses, not
pressure, and it leads to shape changes, not volume changes. While the intro-
duction of shear stresses poses no special problems in a closed system, the
introduction of “shape” does: unlike volume, it is not a “state function”, in
the following sense. When the temperature and all stresses are prescribed, the
volume could be derived from a complete knowledge of all material properties;
so could the energy and the entropy to within an additive constant; but the
“shape” of the specimen could not be derived in any way. It is thus imperative
that constitutive relations contain the strain only in differential form (see also
HART, 1970). _ ‘

For a derivation of equilibrium properties, and for a definition of driving
forces, a differential formulation of the thermodynamic laws is all that is
needed. Integral values of the extensive variables are used in conventional
thermodynamics to specify the state of the material: if all macroscopic vari-
ables are known, the material parameters in the constitutive laws follow
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Summary

Plastic deformation is an essentially irreversible phenomenon. The driving
force for such processes is the deviation from (static) equilibrium. Evidently,
the reference state, thermo-mechanical equilibrium, must be well described
before a treatment of irreversible deformation can be accomplished. Thermo-
dynamic relations under the essential presence of shear stresses and strains
are given in sec. 21.

Equilibrium properties take on a special importance in plastic flow since,
in contradistinction to most other irreversible processes, the response to
applied forces is here extremely nonlinear. In fact, at the lowest level of
approximation, there is a range of stresses under which a solid can be in
equilibrium; it is the limit of this range that is of prime interest. We call it the
mechanical threshold or, in a restricted sense, the yield strength.

Plastic deformation occurs almost exclusively by the motion of dislocations
(sec. 22). During such motion, the (Helmholtz) free energy of the crystal may,
at least locally and at least temporarily, increase providing a resistance to the
motion. We call the rate of change of free energy 8F per unit volume V, with
the shear strain 8y, at constant temperature, the glide resistance:

18F
T= — —.
V &y
If the motion takes place reversibly, exactly this rise in free energy must
be supplied by the external work 8W, which is being expended with strain as
18W

172 Sy )
In other words: in equilibrium, the applied stress ¢ and the glide resistance =
must be equal. Any excess of o over = provides a driving force for glide.

While the applied stress is uniform throughout any volume of interest here,
the glide resistance to dislocation motion generally varies drastically from
place to place. However, peaks in the resistance may be overcome by thermal
fluctuations, even though o < 7 locally. Again, the rate of thermal release
depends on the difference between = and o. :

On a local basis, one may consider the interaction of a small, straight
element of dislocation with obstacles in the crystal and derive the correspond-
ing rate of change of free energy, TeLem, the element glide resistance. However
every dislocation element is a part of a longer dislocation line; its interaction
with neighboring elements (and possibly even far ones) contributes to changes
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uniquely if there are not more parameters than observable constitutive
relations—which are, then, called “equations of state”. In crystal plasticity,
the number of relevant material parameters may far exceed the number of
macroscopically observable relations; the use of energy, volume, etc., as
“state variables” then becomes meaningless: plastic deformation is path
dependent. The differential formulation called for above is thus more proper
from a fundamental standpoint. (For a similar treatment, see RICE, 1973.)

Thermal Equilibrium

Among the quantities used to describe the properties of a closed system (a
“body”) are its (internal) energy U and its entropy S. Their variations in an
interchange with the surroundings of the body, during which no particles are
interchanged, but during which an increment of work 8 W is done on the body
and an increment of heat 8 Q flows into it, are restricted by the first-and second
laws of thermodynamics:

8U=068Q + W (First Law, closed system), [21a]
88 > STQ (Second Law, closed system). [21b]

The equality sign in [21b] defines thermal equilibrium (or reversible processes)
at a fixed temperature 7.

Throughout this article, we will be concerned with properties and variations
at constant temperature. For this case, it is useful to define another property
of the material, its (Helmholtz) free energy F whose variation is

SF=8U-—-T38S (8T =0). [21c]
The first and second laws then combine to give
SF < W (8T = 0) [21d)

where again the equality sign defines thermal equilibrium or reversible pro-
cesses at a fixed temperature.

Equations [21b] and [21d] can be used to measure changes in the material pro-
perties .S and F through their interactions with the surroundings (work and heat -
flow), when these interactions are reversible. In phenomenological thermodynamics,
it is then common to operationally define the entropy change by the reversible heat
flow divided by the temperature, and defire the free energy change by the reversible
work ; changes in internal energy then follow from eq. [21c].

From a physical point of view, on the other hand, one often thinks of the material
properties as given, in principle, by the positions and velocities of all the atoms com-
prising the ‘“‘body”. From their potential and kinetic energies, one can then derive
the partition function Z and, from it, define the free energy by

= —kTInZ [21e]

(k = Boltzmann constant). Similarly, the entropy and internal energy would then
be defined from it by
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dF

= — - 21f
S T [21f]
U=F+ TS. [21g]

In materials science problems such as slip, one is not interested in the free energy
of the entire crystal. Instead, one models the body to consist of an ideal crystal and
structural defects. The free energy[is then that of all the defects, such as internal and
external surfaces, point defects and dislocations.

Often, such models are essentially zero-temperature models (i.e. finite-temperature
behavior extrapolated to zero temperature and -without zero-point effects); in that
- case, the calculated energy is the internal energy U and, appropriately, the material
properties used, such as specific surface energy, elastic constants, etc., should be the
““zero-temperature” values. On the other hand, within the same model, one may
often assume that the only contribution to the entropy comes from the temperature
dependence of the specific surface free energy, the elastic constants, etc., and not,
for example, from changes in dislocation core configuration; in that case, insertion
of the values of these constants af temperature immediately gives the free energy F,
and one may obtain S and U from egs. [21f], [21g].

Mechanical Equilibrium

In this article, we shall only be concerned with mechanical work terms, and
not with electrical or magnetic ones. The increment of work 8/ done on a
body, reversibly or not, is then defined by the integral over the surface of the

body of all the scalar products between the incremental displacement du of a

surface element and the locally applied force dX:

W = f Su, dK;. [21h]*
surface ’

Mechanical equilibrium demands that all the forces dX, (if treated as free)
and all their moments balance out to zero, so that the body will not accelerate
or rotate. The forces are transmitted through the body by means of a stress
field o;;. In the simplest case, which we shall consider first because it is usually
realized in test conditions, this stress field is uniform. The statement of
mechanical equilibrium then reduces to saying that the surface tractions
derived from the stress field balance the applied forces at the surface:

dK, = oy n;d4 (mechanical equilibrium) - [21]

where the vector 77 is the surface normal and dA is the area element at a point.
The expression [21h] for the work increment then simplifies to

SW = V gy, 8¢, (mechanical equilibrium and 8o;y = 0)  [21j]
if we define (HILL, 1967; RiCE, 1970)
Seiy = TI/ f 1Sty 4 Suyny) dA. [21k]

surface

* Summation is implied over repeated subscripts in this section.

Zd& T derest
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(Elimination of the antisymmetric part of Su.n was not necessary, but this
term would not have contributed to the work, since the stress tensor is
symmetric.)

Equation [21k] is an unconvential definition of the strain increment, but it is
appropriate to the particular problem at hand: when the stress is uniform, the strain
and the surface displacements will generally not be uniform (unless the material
is homogeneous). However, only their averages enter into the work equation.

If the strain increment were instead defined, in the conventional manner, on a
local basis, as

Py’ _3%) [21£]

LOC — —_—
86“ o é (6x, + 6x.

where 3u; must now be a continuous and differentiable displacement field, eq. [21k]
would follow from [21£] and Gauss’s Theorem with

Sery — Il/ f 569C 4V, [21m]

‘“The macroscopic strain is the average of the microscopic strains.”

Another interesting special case is one in which the (local) strain is uniform, but
the stress is not (unless the material is homogeneous). Defining the local stress by an
equation of the form [21i] in terms of forces to be measured at local cuts, allows one
to express the work increment (eq. [21h]) by

SW = J okOC 5O 4V [21n]

This is the Principle of Virtual Work and can be derived under the assumptions of

equilibrium of all forces and continuity of all displacements. If now 8¢;; = 8€¢5°€,

we find immediately that eq. [21i] still holds true for the macroscopic stress and
strain, if we now use

1
oy = —f U’I;OC dv. [210]
V
*“The macroscopic stress is the average of the microscopic stresses.”
Abstracting from these two special cases, we see that the stress, on whatever
scale it is being used, is always related to the work that must be done by the
. applied forces to produce a given or average strain increment:

Oy = — —. [21p]

The stress used here is always an “applied” stress: it is an expression of
applied forces. We shall discuss “internal” stresses further below.

Thermo-mechanical Equilibrium

We have seen that thermodynamic equilibrium requires 8F = 8W (eq.
[21d]), and that mechanical equilibrium requires W = Vo, ;8¢,. In thermo-
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mechanical equilibrium, we can thus write

where the inequality has again been included to indicate the direction of
irreversible changes (eq. [21d]).

A typical application of this equation may be illustrated by the following example.
Consider an internal virtual change, such as: remove a number &n of atoms from a
certain prismatic dislocation loop and place them at random positions on the outer
surface. (Note that nowhere in this section have we made an assumption about any

-“smallness” of the change symbolized by 3.) Now calculate all changes in the free

energy F of the body due to this change; for example, the change in elastic and core
energies of the dislocation loop and the change in total surface free energy. If the
body is under the influence of any nonzero stress, also calculate all surface displace-
ments (or the average strain, eq. [21k]) associated with this virtual variation. All
other internal, or “hidden”, variables must be allowed to adjust themselves to their
equilibrium values (ot be kept constant!); for example, a glide dislocation loop near
that prismatic loop may change size or shape under the influence of the changed
stress field. Insertion of the calculated values of 8F and Vo8¢, into eq. [21q] gives
the (relative) equilibrium value of n.

In practical cases, one is often not interested in complete equilibrium, but in
equilibrium of those internal parameters that can, according to their respective
kinetics, relax to equilibrium in the time spans of interest. In the above example, one
may assume that the change in size or shape of the glide dislocation loop in response
to the change in internal stresses occurs even faster than the main process considered,
namely the change in size of the prismatic loop. On the other hand, the changed
internal stress may also require an adjustment in shape of a nearby precipitate to
attain complete equilibrium—but such changes may sometimes be considered to
occur at negligible rate. Then, these particular hidden parameters may be kept con-
stant during the virtual variation.

The Driving Force for Irreversible Deformation

In egs. [21b], [21d), and [21q], we allowed for deviations from equilibrium,
if the inequalities held, rather than the equalities. For applications to irrever-.
sible processes, it is useful to have a quantitative measure for the degree of
deviation from equilibrium, which leads to the definition of a driving force
for these processes. We may take the difference between the two quantities
that must be equal in equilibrium to be such a measure. For the case of a
constant temperature, in which we are only interested, we may define (using
egs. [21a], [2Lc]) : ‘

' Y =T8S —8Q =38W — 6F [21r]
and express the Second Law as

S¥>0 (5T =0). [21s]

This quantity is the energy dissipated during the variation, or T times the
“irreversible change in entropy”’. In Irreversible Thermodynamics (see, for
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example, HAASE, 1963), one often defines the time derivatives in place of the
virtual variations in eq. [21r], and then the left-hand side would be the rate
of entropy production, times T. -

For deformations 8¢;; of a body, in which again all nonmechanical work
terms are neglected, eqs. [21r] and [215] specialize to

8¥Y = Vay;8¢;; — OF > 0. ‘ [21t]

This equation has two applications. First, it may be used to find the equili-
brium value of an “internal”, “microscopic”, or “hidden’” parameter, as was
already discussed in connection with eq. [21q). Second, one may use the
macroscopic strain increment 8¢;; itself as the quantity to be varied. With the
definition

1 8F
=_ 21u
T v ée, [ ]
the quantity
18¥
—_ =gy — T . 21V
pic [21v]

may then be called the driving-stress for irreversible deformation, and r;; may
be called the deformation resistance. 1t is seen that =,; has the same dimensions
as stress and that, in fact; its definition (eq. [21u]) bears a close analogy to
that of the stress oy, (eq. [21p]). However, the two are not identical, they are
merely equal in equilibrium.

The deformation resistance r;; describes the change in free energy of the
body as it is being deformed; it may be zero or non-zero depending on the
physical process. For example, in elastic deformation the free energy changes
due to the “‘stretching of atomic bonds”; this change is proportional to strain
(and to an elastic constant), and when the applied stress equals the value of
7;; for this strain, equilibrium is achieved and Hooke’s Law is obeyed. On the
other hand, in Nabarro-Herring creep, which is based on the diffusion of
vacancies, the free energy does not change with deformation; thus, =,; =0
and equilibrium at a finite applied stress o;, is not possible; if the response to
the resulting driving force [21v] is linear, as it is for Nabarro-Herring creep,
Newtonian viscosity follows.

In dislocation glide, with which we will be exclusively concerned, an inter-
mediate situation obtains. For example, the free energy may increase through
the generation of internal surfaces when a dislocation cuts a precipitate; it
may be unchanged while a dislocation travels between precipitates; and it
may decrease temporarily while a dislocation is being attracted into the
coherency stress field of a precipitate. For some applications, we will be
interested in the average change in free energy during long-range dislocation
motion (namely, when considering the energy stored); for some in the
instantaneous change, whether temporary or not (namely, when defining the
local glide resistance).
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Internal Stresses

In the foregoing we have either assumed that the stress is prescribed and
uniform, or that the strain is prescribed and uniform in which case only the
average stress was of interest for the work done. Let us now explicitly consider
variations in stress with position in the body.

These stress variations may be on a number of different scales. On one
extreme, the body of interest may not be a test piece under deliberately simple
boundary conditions, but a macroscopic structure subjected to various loads
and displacement conditions. In this case, we assume the boundary value
problem to have been solved, by the methods of solid mechanics, to the point
where the stresses on various elements of the structure are known. These
elements under essentially uniform stress may be many inches across; in the
presence of strong stress gradients, the variations in stress may be deemed
negligible over distances of a small fraction of an inch. Such elements are the
“bodies” we consider in our analysis, and the stresses transmitted into them
by the neighboring elements are the “applied forces” that do work.

On the other extreme, there may be microscopic variations in stress due to
incompatibilities in the material such as dislocations or coherent precipitates.
They typically vary over distances of the order of a micron or less and are
often referred to as “internal stresses”. If they are, for the moment, assigned
the symbol o]} " (conventionally counted positive in the direction opposing -
the applied stress o,;), one may wish to define a truly local stress by

Loc INT
o - =0y — oy . [21w]

This local stress would be opposed by the local deformation resistance 1;°¢

so that the driving force for irreversible flow becomes
(oy—ob D) —mS [21x]

Alternatively, one may realize that these internal stresses are material pro-
perties rather than reactions to boundary conditions. They do contribute to
the free energy of the “body”—say, in an amount 8F'™™T. This free energy
changes when the local element is deformed—say, by

INT 1 SFINT
T = — . 21
is V e [21y]

This quantity may be called the ‘“‘deformation resistance due to internal
stresses’”. The total driving force for irreversible deformation is, in this inter-
pretation,

0'” —_ (T:?T + Thoc) = 0'” _— TU' = [212]

Evidently, egs. [21x] and {21z] achieve the same purpose. Equation [21x]
uses a local or “effective” stress working against a local resistance; eq. [21z ]
uses the applied stress and incorporates all internal stresses into the deforma-
tion resistance. HIRTH and Nix (1969) have shown in detail that a consistent
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thermodynamic system can be built on either choice. We prefer the latter
because it is operationally better defined : while local stresses can be measured
in principle, only applied stresses can be readily measured in practice. Simi-
larly, the total deformation resistance may be measured, essentially by
measuring the applied stress in (or at the limit of) equilibrium; its various
components can be separated only by the use of microscopic models,

The realization that the macroscopic effects of any microscopic internal
stress are indistinguishable from those of any other deformation resistance
has led some authors to call the entire quantity r,,, defined by eq. [21u] and
called “deformation resistance” in this text, an “internal stress” or “back
stress”, even if it is caused, say, by incoherent inclusions without a stress field.
We avoid these words, since they are used in different meanings by different
authors.

There is an intermediate scale of stress variations within a body, usually referred
to as “residual stresses”. These arise from two common causes: either the body
underwent nonuniform plastic deformation (such as bending) before being
considered, in which case the scale of the variations is that of the macroscopic
structure; or the body is a polycrystal which underwent heating cycles or other
treatments to which the different grains respond differently, in which case the scale
of the variations is that of the grain diameter. These residual stresses can sometimes
be calculated on the basis of very general models, or they may be measured by the
use of x-ray diffraction. In such cases, it would be appropriate to add them in with
the applied stresses and consider the “body” to be of a smaller scale, for example,
an individual grain in the polycrystal. The choice here depends essentially on the
purposes of the investigation rather than on basic thermodynamics or operational
philosophy.

22. DISLOCATION GLIDE

The most important mode of plastic deformation in solids is slip; at very
high temperatures, it may be supplemented by diffusional mass transport and
grain boundary sliding, at low temperatures by twinning. In slip, plastic
deformation is effectively concentrated into the region between some atomic
planes: in an idealized unit process, one-half of the crystal slips over the
other half at an imaginary cut made between two neighboring atomic planes,
by an amount and in the direction of the Burgers vector—generally the shortest
lattice vector. After the slip has taken place, the atoms in the two halves of
the crystal are again in perfect register; any evidence of the fact that slip has
taken place is restricted to a change in surface shape.

Slip occurs by the generation and propagation of dislocations. The easiest
definition of a dislocation loop for our purposes (although not a completely
general one) is that it is the demarcation line, in one slip plane, between an
area that has slipped and a surrounding area that has not. When the disloca-
tion loop expands in the slip plane by “glide”, the slipped area increases and
so do the surface displacements.

On the other hand, dislocations are structural defects which contribute to
the free energy of the crystal. Any change in the position of dislocation
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elements may in general change the free energy. We may regard a virtual dis-
placement of some dislocation elements as an internal variation of the kind
discussed in the last section, and use as the internal parameter the area da
swept out in the process. Whether and in which direction such a variation
should actually tend to take place is then determined by the “‘driving force”
for this variation.

% s

Note again that the change in free energy is not uniquely determined by the

amount 8a of the area swept; it may depend on the details of the prescribed

variation and on all the other internal variables that adjust themselves to new

equilibrium values. We shall discuss these problems in detail in the following
sections.

Y Ve Sy 8F >0 [22a]

n

A

80— /ey

FiG. 22-1. Derivation of the macroscopic strain 8¢,; produced when an additional

—
area 3a is swept out by a dislocation of Burgers vector b, on a slip plane with
—

normal n.

Shear

The average strain 8e;; (defined in eq. [21k]) produced by an increase 8a
in the slipped area may be considered to consist of two parts. The first is the
direct consequence of the virtual variation, without regard to any incom-
patibilities generated or their relaxation to equilibrium. It is easily obtained
by introducing an internal surface into the body, for example along the slip
plane (Fig. 22-1), but in any case containing da as a surface element, and
_ integrating eq. [21k] over both halves of the body. The only nonzero contri-
bution to this integral is then from the element 8a, and it is (eq. [21k])

b3da by ny + bin

8 =]
7 2

[22b]

PMS .. n
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if b is the amount of the Burgers vector,»I;o the unit vector in its direction, and
7 the unit vector perpendicular to the slip plane. The combination of unit
vector components in eq. [22b] is the generalized Schmid factor (see, for
example, Kocks, 1970a), and the remaining factor is the “shear” or “glide”
produced by dislocation motion:

8y = —. [22c]

A second contribution to the surface displacements comes from the elastic
relaxation of the incompatibilities created: the strain field of the dislocation
at the new position is different from that at the old position. The contribution
of these relaxations to the macroscopic strain is zero so long as the material
is homogeneous and linear-elastic: the local change in strain is then pro-
portional to the local change in (internal) stress, which must average out to
zero by eq. [210] when the applied stress is constant. Equation [22c] then
gives the entire strain due to dislocation movement.

When the material is not elastically homogeneous, as would be the case, for
example, for a polycrystal of an elastically anisotropic material, the change in the
internal stress pattern can lead to an additional contribution to the average strain.
It is as “permanent” as the plastic contribution [22¢], but only has the order of
magnitude of elastic strains. It can be very important in the microstrain region, but
not at ““macroscopic” strains (larger than, say, 0.2 %), as they are of concern in flow
phenomena. (For an exact treatment, see KRONER, 1958 ; RIcE, 1971.)

Resolved Stress and Glide Resistance

Since only one component of the strain produced by dislocation motion is
nonzero (namely, that in the slip plane in the slip direction), only one com-
ponent of stress contributes to the work done during slip. In analogy to the
general eq. [21p], we define ’

o=_""=_°7 [22d]

This is the resolved stress, shear stress, or simply (applied) “stress”, as we
shall use it through the remainder of this article.

In analogy to the general definition [21u], we can also define a special
deformation resistance, the “glide resistance”, by

L 18F _18F -
= V% baa [22¢]
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so that the driving force for the virtual dislocation glide under consideration
is

¥ b — b, [22f]

da
In the limiting case that 8a is thought of as the differential forward displace-

ment of a unit length of dislocation line, eq. [22f] may be said to define the
net force per unit length on the dislocation.

Energy Stored

Any feature of a crystal which results in a nonzero value of the glide
resistance 7 is an obstacle to slip. In overcoming an obstacle, free energy may
be stored temporarily (e.g. as the increased length of dislocation when it bows
between discrete obstacles) or permanently (e.g. as the surface energy of new
surfaces, or as jogs or point defects). The “permanently’’ stored energy may
be removed by some independent process—recovery or annealing—either
after the deformation at a higher temperature, or even during the deformation
itself. In principle, it can be identified by its annealing kinetics, whereas the
temporarily stored energy is inseparable from the deformation process.

Processes in which temporary energy storage occurs can, in principle, be
activated by thermal fluctuations, processes which store energy at a constant
rate cannot. (The drawing-out of a dipole is an example.) More generally, .
in overcoming an obstacle some energy is stored temporarily, some perma-
nently. It is useful to know the second (permanent) component, since,
ultimately, this represents the part of the flow stress which cannot be over-
come with the help of thermal fluctuations.

To obtain this, we consider the virtual motion of a dislocation over an area
large compared with that associated with a single obstacle. The change in free
energy of the body is then given by integrating eq. [22e]:

Fyor = Vf rdy = Vrsror J. dy. [22¢]

We see that, whenever the average glide resistance rgyog defined by this
equation is nonzero, the free energy stored is nonzero, too.

The thermodynamic conditions for macroscopic dislocation motion, or
slip, now require that

o >-1sror  (slip possible) [22h]

or, in words, that the work done, per unit volume, by the applied stress at least
equal the stored free energy of deformation per unit volume. This prescribes a
lower limit to the applied stress required for flow; below this stress 7srog, no
steady flow can occur even at high temperatures.

The energy stored during plastic deformation can, in principle, be measured
calorimetrically during subsequent recovery or recrystallization. Note, however,
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that such measured stored energies are internal energies Usror, which should give
an upper limit to the free energy Fsror in €q. [22g). The method is further complicated
by the fact that a very small change in the specific heat due to plastic deformation
can have profound effects on the measurements (GOTTSTEIN ef al., 1973).

Physically, an increase in the free energy of the specimen during plastic deforma-
tion may correspond to the creation of internal surfaces when precipitate particles
are cut; to disordering of an ordered structure by deformation; to the creation of
point defects and jogs; to the storage of dislocations, in the form of loops, dipoles,
cell walls or tangles; or to the production of cracks. When experiments (e.g. calori-
metric measurements) show that a large part of the external work is stored, as in
stage I of the work hardening of fcc metals, then it follows that thermal fluctuations
do not have much effect on the motion of a single dislocation.

On the other hand, many types of obstacles result in no energy storage, i.e. Tstor
is zero. Examples are the overcoming of internal stress fields or of Peierls hills; the
conservative motion of jogs; and various diffusion controlled processes. For such
mechanisms, Fsyor is zero, and, in principle, an infinitesimal applied stress will cause
flow, although its rate may be undetectably small.

A special situation arises when the moving dislocations do not sample the entire
slip plane (even though they may produce macroscopic plastic flow—see sec. 25: .
“‘statistics’). This may arise when there are impenetrable inclusions or twins in the
crystal, or when localized dislocation *‘tangles” develop during work hardening.
In these cases, the average internal stress sampled by the moving dislocations need not
be zero and would thus lead to a finite rsror. This is especially important when the
inclusions or tangles produce a constant level of “image stresses’ in the finite
crystal—which they do if their stress field plus that of any previously stored disloca-
tion loops around them decreases as 1/r? or more slowly (BRowN, 1973).

The thermodynamic consideration leading to eq. [22h] holds in the average over
suitably large volumes, i.e. for long-range slip. Some dislocation motion can occur
at stresses o < 7sror; for example, because the non-uniform distribution of obstacles
in the slip plane leads to a variation in the local glide resistance. These pre-yield
effects contribute strains comparable with the elastic strain, and we shall exclude
them from our discussion of general plastic flow.

Finally, at least two kinds of anelastic behavior (time-dependent, recoverable flow)
can occur in single crystals, and must be distinguished from the irreversible plastic
flow occurring at ¢ > 7sron. First, when a stress is applied to a crystal containing
obstacles, segments of dislocation bow between, or ride up on, the obstacles. This
process occurs with a relaxation time controlled by the processes which dissipate
energy as the dislocation moves (phonon drag, etc., see Chapter 3) and is usually
very small. Second, the stress may cause some obstacles to be overcome, or cut,
but in a manner which is precisely reversed when the stress is removed. The relaxa-
tion time for this process (Chapter 4) is usually longer.

The Mechanical Threshold

We have seen that, depending on the magnitude of the applied stress, dis-
location motion is possible on different scales. Even at zero stress, local
dislocation rearrangements can occur, but equilibrium is possible. When the
stress exceeds the average glide resistance in any slip plane in which there are
mobile dislocations, large-scale slip is possible, but it has to rely on thermal
fluctuations to overcome locally higher glide resistances. -

!n all practical cases, there is also a maximum in the glide resistance on any
slip plane. When the applied stress exceeds this maximum glide resistance
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#, dislocations will not be able to find any equilibrium positions and large-
scale slip must, in principle occur:

o>7 (equilibrium impossible). [22i]

This is the mechanical threshold, or the yield strength, or the flow stress at zero
temperature. It is the reference state for all plastic flow: at stresses above it,
acceleration- and velocity-dependent forces come into play (they will be dis-
cussed in Chapter 3); at stresses below it, presuming they fulfill eq. [22h],
thermal activation comes into play (as will be discussed in Chapter 4).

The variation of the glide resistance with position in the crystal, which is
an equilibrium property of the material, is thus of paramount importance
for its dynamic behavior. In the following sections, we will discuss various
aspects of this equilibrium of dislocations within the crystal.

23. TBE GLIDE RESISTANCE

We have established that the resistance of a material to dislocation motion
is characterized by the quantity (eq. [22e])

_18F _15F

Here Fis the (Helmholtz) free energy of the deforming crystal. The calculation
of = for a large class of obstacles is complicated because of the flexibility of
the dislocation line. This ability to bend causes the free energy F, and thus 7,
to depend on the shape of the dislocation. It is helpful, first, to calculate the
quantity = for a dislocation element.(that is, a very short, straight segment) in
spite of the fact that the dislocation may not, in reality, remain straight. This
procedure allows us to isolate and describe the interaction of the element with
the obstacles which oppose slip, without the complications (considered below)
caused by the interaction of the dislocation with itself. The element glide
resistance diagram that we obtain by this simplification describes the shape
of an isolated obstacle. Later, we will take the flexibility of the dislocation
into account and we will find that the glide resistance diagram for a flexible
dislocation line almost always differs from that of an element; but it can be
calculated if that for the element is known.

The Element Glide Resistance

Assume that the dislocation element of length d¢ is located at a particular
point (x, y, z) in the crystal. First identify the x-direction with the direction
of this line element and the z-direction with the normal to its glide plane.
Now cut from the crystal a slice of thickness d¢ (and area A) perpendicular
to the x-direction at position x. All necessary surface tractions and chemical
potentials have to be applied over the cut faces so that the slice itself experi-
ences no changes whatever. Conceptually the easiest way of fulfilling this
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condition is to make a large number of copies of this slice and put them
together into a new artificial crystal that may, in principle, be of infinite
extent in the x-direction. The result of this procedure is that the dislocation
element under discussion has now become an infinitely long, straight dis-
location.

If this dislocation is displaced in equilibrium through the distance 8y, the
shear produced uniformly in each slice, of volume 4 d¢, is (eq. [22¢])

sy —=0%dé_bdy [23a]
A dé¢ A
and the free energy of each slice will change by an amount (FrLemdd),
where F g o is the free energy of the slice divided by its thickness. It is then
possible to define a glide resistance (eq. [22¢]) for this element: the element
glide resistance (or, more briefly, the element resistance) for a straight dis-
location element, by

8F, ELEM
= —" 23b
TELEM A 8y / [ ]

Like the quantity  defined in the last section, rg; 5, has the dimensions of
stress. It is a material property describing the local resistance of the crystal

TELEM

J/\/’:
\V4

FiG. 23-1. Schematic element glide resistance for one slice of the crystal.

to the motion of a straight dislocation element. Just as o d{ can be regarded
as the force exerted by the applied stress and urging the dislocation element
forward, the quantity 7eLem b d€ can be regarded as the force with which the
crystal opposes its motion. . )

As the element moves forward, this resisting force may, in general, vary
with position in an arbitrary fashion, an example of which is shown in Fig.
23-1. Note, however, that in each of its many positions ¥ the dislocation is to
be in equilibrium. Whether this equilibrium is stable or unstable does not
interest us here. We merely consider states in which all forces on the disloca-
tion are fully balanced and the dislocation has zero velocity.

Figure 23-1 describes a single slice through the obstacle. We must now
produce further artificial crystals made up of sets of identical slices of thick-
ness d¢ and again perpendicular to the x-direction, but corresponding to
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positions x, x + d§, x + 2 df, etc., in the real crystal. This procedure will give
the information schematically shown in Fig. 23-2. Here, each slice is repre-
sented by a single curve, such as one of those contained in Fig. 23-1, located

at the relevant position x.

Figure 23-2 is not yet a complete description of the interaction of the dislocation
element with the crystal. The interaction may depend on the direction of the disloca-
tion element, not just on its position. For example, the interaction of a screw
dislocation with a particular obstacle will in general be different from that of an
edge dislocation; or a particular obstacle to dislocation movement may be narrow
in one direction and wide in another. In principle, we thus have to repeat the entire
procedure for every direction ¢ contained in the glide plane (xy). In the simplest of
cases, when the cross section of the obstacle in the slip plane is circular, the largest

TELEM

A7

Y

1%
'/

y

FiG. 23-2. Schematic element glide resistance for elements lying parallel to the
x-direction and moving in the y-direction.

difference is that between screw and edge dislocations, and the behavior can then
be adequately described by just two figures of the kind shown in Fig. 23-2. When
even this difference vanishes (for example, when the resistance is to the glide shear
only, no matter whether it is made by a screw or an edge dislocation), the element
glide resistance is isofropic, and Fig. 23-2 suffices.

Of course, the element glide resistance may be different for every specific slip
plane, that is for different locations z. In any application, one will only be able to
deal with a “typical” element glide resistance diagram or “profile”. Such a typical
element glide resistance diagram, for a particular orientation of a dislocation ele-
ment, may legitimately be called an (elemental) force distance diagram. However,
we have reserved this term for another common (and operationally definable)
meaning, namely referring to the plot of the total force exerted on a dislocation
segment by a discrete obstacle versus the average forward distance moved by the
segment at the obstacle (sec. 25).

The Line Glide Resistance

~ Figure 23-2 is a map of the glide resistance felt by a straight dislocation
element of a certain direction anywhere in a certain (or a typical) slip plane.
If one artificially introduced a long straight dislocation of the same direction
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into this slip plane, its different elements would experience different forces
(plotted along a line parallel to the x-direction in Fig. 23-2). Under. a given
applied stress o, the driving force

bo — bTELEM(f )

could then not be zero for all elements, and the condition for the virtual
variation of the position of one element, namely that all other internal para-
meters such as the positions of all other dislocation elements be allowed to
relax to their respective equilibrium values, would be violated.

If one allows such relaxations to take place, the dislocation does not
remain straight, and then it exerts forces on each element of itself, which
were not considered before. These forces are internal stresses of the kind more
generally discussed in sec. 21 (see also BESHERS, 1971). They may be accounted
for in different ways, depending on the choice of “the system” and “the
surroundings’”: if one continues to focus on an individual dislocation
element, the self stresses may be merely added to the applied stress to give a
local or “effective’ stress, but this implies that they are known; if one treats
the whole crystal as ““the system’, or at least the entire, continuous disloca-
tion, they are counted as a dependence of the free energy on the shape of the
dislocation and contribute to the glide resistance just as the element glide
resistance due to “obstacles” did. For the reasons outlined in sec. 21, we
prefer the latter procedure.

Let us define, then, the stress exerted by all elements of a continuous
dislocation on a particular element of itself as 75 (to be derived in some
detail below), and the total glide resistance felt by this element of a long
dislocation line as

TLINE = TELEM T TSELF- [23c]

The total driving force tending to move this element forward is then

bU —_— bTLlNE' [23d]

It may be zero everywhere along the dislocation line, if this line adjusts its
shape so as to make 74 p exactly compensate for the given variations in
TeLem: In equilibrium, T g is constant along the entire length of the dislocation
line. This is a prime advantage of incorporating the self stresses into the glide
resistance.

To summarize the procedure of this section:

Out of equilibrium, the expression {23d] determines the driving force on
each dislocation element. Under a given applied stress, o, each element then
tends to move to a position, and to adopt a curvature, such that 7g; gy + 75g0r
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is equal to the applied stress at every point along the dislocation. Where
TeLEm has a large local value, the dislocation adopts a strong curvature such
that 7gr is large and of opposite sign; the difference between the two is o.
Where g em 18 Zero (between discrete obstacles. for example), the dislocation
adopts a curvature such that 7sg r precisely equals the applied stress. If the
applied stress is raised slightly, the dislocation line advances and changes its
shape, such that the line resistance, Tyne 2g2ain equals .

Suppose that a length I of dislocation, long enough to sample a “typical”
region of the element glide resistance diagram, moves forward adopting
successive equilibrium shapes for which 7 e = 0. In so doing it sweeps out

TLINE

TgtoR - ————— " TTUN\ T T T TTTT T -

T

— = q

F1G. 23-3. Schematic line glide resistance diagram as a function of the area swept.

an area g, and changes its shape as it moves. The line resistance is then most
conveniently represented as a plot of e against glide area a:

TLINE = TLINE (@) [23¢€]

This is a one-dimensional dependence (Fig. 23-3): the x-dependence of the
reLem diagram (Fig. 23-2) has been averaged out by the dislocation itself.

Adjustment of the dislocation line shape to a nonuniform element resis-
tance is not the only reason for self stresses to appcar. Another important
class of problems consists of the nucleation of expandable shapes in front
of linear barriers (sec. 24).

Dielastic Interactions

One type of glide resistance deserves special mention because its classification in
the scheme developed here is somewhat arbitrary. The free energy of a crystal
changes when a dislocation moves closer to a free surface or other elastic hetero-
geneity, such as an inclusion that has different elastic moduli. Such interactions have
been termed dielastic, in analogy with diamagnetic and dielectric effects.

One may call such changes in free energy changes in the self energy of the disloca-
tion, and their derivatives self stresses. There are, however, a nurmber of differences
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between these dielastic interactions and the (paraelastic) effects due to changes in
shape of a dislocation, discussed above (and, in more detail, below). The most
important difference is that the dielastic interaction of one dislocation element with -
all elastic heterogeneities in the body does not depend on the position of the other
dislocation elements. Thus, at each position in the crystal one can state what the
energy of a dislocation element (of a given orientation) would be if it were there.
The gradient of that energy is a force on the dislocation element exactly like the
element glide resistance. In contradistinction to other element glide resistance
mechanisms, such -as the generation of new interface, of point defects or jogs, or
such as internal stresses, the glide resistance due to dielastic interactions is nonlocal:
it depends on interactions with far-away parts of the body. Thus, the algorithm used

Self Stresses and Line Tension

We have defined the self stress as a quantity which describes the variation
of the free energy of a dislocation with a virtual variation in its shape, during
which an incremental area g is swept (eq. [23e]). The virtual variation may
be large or small; the two equilibrium shapes to be compared depend on the
details of the problem. In later sections, we will use the appropriate expressions
for the self stress as we deal with specific problems. Here, we will introduce -
various basic models as they apply to an infinitesimal element of dislocation
line.

At the lowest level of approximation, the constant line energy model, the
free energy of a dislocation is simply proportional to its length.#, the constant
of proportionality being the line energy #p5. The self stress then becomes

(eq. [27e])

1 8.7 constant line ener
TSELF = b_? DIS — ( &

Sa approximation). [23f]

For small variations in the radius of circular loops, the change in length 5.2
divided by the change in area 84 is simply the curvature K, 80 that the self
force per unit length becomes

brserr = Fps- (constant line energy approximation).  [23g]

The form of this equation itself justifies that the equilibrium shape of any
planar dislocation under constant stress must be one of constant curvature,
in this model. Equation [23g] also holds for small variations in the curvature
of circular arcs of constant secant length.

The (free) energy per unit length of a dislocation, or line energy, Fy, is
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then, in first order, set equal to the value appropriate for a screw dislocation:

pb? In(X/r,)
2 2n

ZF SCREW —

[23h]

e
where p is the appropriate shear modulus (to be discussed below), X is a
correlation distance characterizing the more distant dislocation interactions,
and r, is an effective core radius, which allows for core energy contributions.
The second factor in eq. [23h] is often set equal to 1 for order-of-magnitude
estimates, which corresponds to X ~ 500r,. Then,
pb?

Fons = . [23h']

Alternatively, one might use the line energy of an edge dislocation:

1 .
FepcE = 1—_;} F scrREW [23i]

where v is Poisson’s ratio, using isotropic elasticity. We will give below (eq.
[23£]) a more appropriate average of the line energies [23h] and [23i] to be
used with this constant line energy model.

The very admission of a difference in energies between edge and screw

dislocations is inconsistent with a constant line energy model: the line energy
does not only depend on length, but also on direction. Moreover, the elastic
anisotropy of many crystals is not negligible; while in some cases (NaCl) it
tends to decrease this difference between screw and edge energies, in most
cases the difference gets accentuated (DEWIT and KOEHLER, 1959; BROWN,
1964; CHOU and SHA, 1971).
. In any adjustment of dislocation shape, the free energy now changes both
because of changes in length and because of changes in the angle a between
the line direction and the Burgers vector. The self stress in an element, as
defined by the first part of eq. [23f], is still proportional to its local curvature,
but with an angle-dependent factor, the local line tension &:

brsgrr = €(a) (line tension approximation) [235]

where (DEWIT and KOEHLER, 1959; STERN and GRANATO, 1962; CHou and
ESHELBY, 1962)

d? Fpis (o)
da?
Under the governance of eq. [23j], the equilibrium shape of a dislocation

loop is no longer circular, but often in a good approximation elliptical, with
the ratio of major to minor axis being that of edge to screw dislocation energy.

V6 (a) = Foi(a) + [23k]
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The average line energy of a closed loop, i.e. the line energy of a circle of the
same area and the same total energy, is

[ V fms = \/-gz'—scuw'tgﬁbcs- [23€]

" This geometric mean is a useful value for insertion in the constant line energy
i model (eq. [23g]).

3 l‘ In isotropic elasticity theory, the dependence of the free energy per unit

length on dislocation character is given by

Fpis(a) = Fscrew (COS2 e+ sin? a.). [23m]

1—v

‘ Table 2-1. Glide dislocation data for some elements at room temperature:
3 Burgers vector b, shear modulus p for screw dislocation energy, ™+ and ratio
of edge to screw energy.©©-@ .

b pb? p (1) Zence_ Verr
A eV (3) 10'*Nm~2(4) F screw = 1-F5/Fp
@

Al 2.86 3.77 2.59 1.56 0.36
Ni 2.49 7.60 7.86 1.57 0.36
Cu 2.56 4.39 4.21 1.76 0.43
Ag 2.89 4.00 2.66 1.82 045
Au 2.88 3.72 2.47 1.99 0.50
Pb 3.50 1.95 0.73 2.02 0.50
Si 3.83 22.37 6.37 1.35 0.26
Ge 3.99 -20.66 5.20 1.33 0.25
v 2.63 5.7 5.02 1.45 0.31
Cr 2.50 12.21 12.55 1.14 0.13
Fe 2.48 6.15 6.44 1.88 0.47
Nb 2.86 6.46 443 1.37 0.27
Mo 2.73 16.98 13.40 1.29 0.22
Ta 2.86 8.92 6.11 1.75 0.43
w 2.74 - 20.54 15.98 1.39 0.28
Mg 3.20 3.40 1.66 1.49 0.33
Zn 2.66 5.78 493 1.12 0.11
Cd 2.97 4.26 2.60 1.32 0.24

Notes:

(1) fcc and cph structures (b in close-packed direction): p = 4/Cealcy; — an)% (2) fece
and cph structures: close-packed glide plane; bee structures : for {110} glide plane;the edge
dislocation energies for other glide planes are up to 2% higher; (3) 1 eV = 1.6 x 10-12
erg = 1.6 X 1071°J = 1.16 x 10%T(K); (4) 10° Nm~2 = 107 dyn cm~2 = 10 bar ~ 102

. K) bec shactors: é((,’squcw)

gf mm~2 = 102 p mm~2 ~ 145 psi.

References:

(@) American Institute of Physics Handbook, 2nd ed. 1963 (McGraw-Hill).
(b) H. B. HUNTINGTON (1958) Solid State Physics (SEITZ et. al., eds.) 7, 213.
(¢) Y. T. CHou and G. T. SHa (1971) J. Appl. Phys. 42, 2625.

(d) Y. T. CHou and J. D. ESHELBY (1962) J. Mech. Phys. Sol. 10, 27.
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For the small variations in a appropriate to an infinitesimal element, one then finds
from eq. [23k]:

1+
Escrew = = : F screw .
| -2 (local line tension) [23n]
— 2v
Sepce = —;T F scrREW

Note that the line tension of the screw is larger than that of the edge, while
the reverse holds true for the line energies (eq. [23i]).

In anisotropic elasticity theory, the line energy of a straight dislocation can be
given in terms of the anisotropic elastic constants for some combinations of line
direction and Burgers vector, and has been solved numerically for others. One may
then define an “appropriate shear modulus” ¢ so that eq. [23h] in fact gives the line
energy of a screw, and an “effective Poisson’s ratio”” so that eq. [23i] in fact gives
the line energy of an edge, even for anisotropic materials. These values are given
for some elements at room temperature in Table 2-1.

Unfortunately, the line tensions obtained from eq. [23k] are then, in general, not
well described by eaqs. [23n] with the same effective value of v; BARNETT &! al. (1972)
have derived them numerically for copper, nickel, and niobium. As an example,
Table 2-1I shows all values for copper, in units of Fscrew:

Table 2-11
Anisotropic Approximation Isotropic theory .
calculation verr = 0.4 v=1/3
s
F scmew 1 1 1
Fepce 1.76 1.76 1.5
Fois 1.33 1.33 1.22
Escrew 32 2.53 20
fepce 0.61 0.24 0.5

Though a great improvement over the constant line energy approximation, this
anisotropic line tension still attributes the self stress to a local property of the dis-
location line. The self stress at (x, y) in fact depends not only on the local curvature,
but on the distant shape of the dislocation also: each element interacts with all
others, not simply with its neighbors. The form of this interaction is in fact known,
even in anisotropic elasticity; the only remaining point of dispute is the correct
core cut-off procedure.

‘For any given shape, i.e. an entire set of coordinates {x, ¥},

TSELF — TSELF {x, b)) [230]

may then be calculated numerically. By an iterative relaxation, the equilibrium
shape can be determined for any given boundary conditions (Bacon, 1967; FORE-
MAN, 1967; BACON et al., 1973). Frequently, the result can be adequately described
by a judicious choice of the outer cut-off parameter X in eq. [23h]; we shall meet
a case in point in eq. [25i]. In all cases so far investigated, this leads to a lower value
than that used in eq. [23h’]. Since, on the other hand, the anisotropic corrections
t:cnd to raise the energy, we shall retain eq. [23h"] for order-of-magnitude calcula-
tions.
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Quasi-straight and Quasi-circular Dislocations

The self stress describes the tendency of a dislocation to change shape.
It is evident that it cannot drive a dislocation forward as a rigid body
(BEesHERS, 1971). Any component of T¢gLr, 52y, in the y-direction, integrated
along the entire length of the dislocation, must therefore vanish:

| bregpsingde =0 [23p]
0

where i is the angle between the dislocation element (length d¢) and the y-
axis. The integration does not have to extend over an infinitely long disloca-
tion, but only over a length long compared with the wavelength of variations
in the element glide resistance. Alternatively, it may run between any two
points, x apart, along the dislocation that have a common tangent (Fig. 23-4).

FiG. 23-4. A quasi-straight dislocation: the average forward self stress is zero.

For a quasi-straight dislocation, whose average direction is along the x-
axis (perpendicular to y in the slip plane); eq. [23p] then becomes

X
J. b TSELF dx - 0, [23q]
8 .
or, with eq. [23c]),
X X
f Tong 4X = f TeLem dx. [23r]
0 0

In equilibrium, when 7yne is constant along the dislocation, the line resistance
is equal to the average of the element glide resistance, averaged along the
average direction of a sufficiently long, quasi-straight dislocation line. In
equilibrium with an applied stress, 0 = r ng: the total force ab,)/ exerted on
the dislocation line in the y-direction is carried by the “obstacles”.
Equation [23q], multiplied by 8y, expresses the postulate made above that
the free energy of the crystal cannot change when the dislocation moves
forward as a rigid body. It is evident that the virtual variation 8y must be
indenendent of x for eq. [23a] to hold. In most practical cases, two successive




EQUILIBRIUM 29

equilibrium states do not correspond to such rigid-body motions; rather, the
dislocation overcomes a limited region at a time, the rest of its length being
unaltered. We shall treat specific cases in secs. 24 and 25.

If, instead of a quasi-straight dislocation, we consider a closed loop, say
one which undulates around a circle (Fig. 23-5), we have the same rule that
any one component of the self stress integrated over the loop must vanish:
the self stress does not tend to move the loop as a rigid body. However, the

FiG. 23-5. A quasi-circular dislocation: the average radial self stress is equal to
that of the exact circle (dashed).

self stress tends to effect shrinkage of the loop, a process in which motion
and shape change are linked. Its average is

2w
1 F
Er j TseLr 4P = b;s [23s]
0 .
and therefore in shape equilibrium
27
1 F
TLINE — 5_’—7 f ("’ELEM)R dy + 7[1)%5 |.23t]
0

where the integrand is the radial component of the element glide resistance.
The last term may then be considered a back stress superimposed on the
average element glide resistance.

The Plane Glide Resistance

Any theory of macroscopic flow is concerned with the motion of disloca-
tions over an entire slip plane. We call the resistance to such long-range
motion the plane glide resistance, ot simply the plane resistance, TpLaNe- In the
past literature itis often assumed that the maximum plane resistance fprane is
simply equal to the maximum line resistance Frine- In certain simple cases
this is true; but it should never be assumed. Two important reasons why the
plane glide resistance differs from the line resistance are discussed later in
this chapter—we merely introduce them now.
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First, the line glide resistance describes the interaction of a flexible dislocation
with a single “‘typical’” obstacle. It does not take into account the way in which
obstacles are distributed in the slip plane. The plane glide resistance depends on the
statistics of the distribution, as well as on the line glide resistance of the “‘typical”
obstacle. This problem is discussed in sec. 25.

Second, cooperative dislocation motion is possible. A dislocation can overcome
strong, widely separated obstacles with the help of other dislocations in the same
slip plane, that is, by becoming part of a dynamic pile-up. It can be shown (sec. 24)
that dynamic pile-ups can form only when obstacles to slip are separated by more
than a critical distance. But when they do, they cause the plane glide resistance to
be less—sometimes much less—than the line glide resistance.

Below the maximum stress a slip plane can sustain, 7piane, the relation between
the applied stress and the total area swept out by all dislocations in the slip plane
may be expressed by a relation rpane(@). The integral under this curve contains,
according to eq. [22e], the free energy temporarily stored in the rearrangement of
dislocations, or in the “‘dynamic structure”. However, it may also contain energies
dissipated during this process, and in this sense 7pLane is NOt strictly the derivative
of a free energy (eq. [22¢]), as 7e1em and 7 ne are (eqgs. [23b] and [23f]). This becomes
particularly evident at the maximum level 7pane Where the area becomes, by
definition, infinite. Nevertheless, 7pLane does represent the resistance to the motion
of a dislocation (or its partners) and is a material property, derivable from equili-
brium considerations; for this réason, the symbol 7 is appropriate.

Reverse Glide

The element glide resistance was defined (eq. [23b]) from a virtual variation of the
free energy with respect to position of a dislocation element; its sign depends on
which direction is considered to be “‘forward’ motion. If the direction of motion is
reversed, the element resistance simply changes sign:

TELEM — — Tg{gm- [23u]
Thus, the parts of the element resistance diagram (Fig. 23-2) that were formerly
negative are now positive, and vice versa. On the other hand, no such simple rule
holds for the line glide resistance: the path taken by a dislocation line may well
depend on the direction of motion.

The sign convention on the applied stress similarly relies on which direction of
dislocation motion is considered positive. If reverse motions of dislocations are
considered under the same applied stress (sec. 45), both the applied stress and the
element resistance are reversed, from the point of view of the moving dislocation,
and the direction of bow-out is also the same; thus, the same region of the glide
resistance diagram is applicable. (For extensive discussions, see L1, 1970; NICHOLS,
1971.)

24, LINEAR BARRIERS

In the following sections, we will illustrate the concepts of element, line,
and plane glide resistance with the help of some very idealized examples. We
shall take this opportunity to lay the groundwork of merely geometrical or
statistical nature for the more refined and more realistic treatment of glide
resistance mechanism to be given in Chapter 5.
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The simplest possible variation of the element glide resistance is a one-
dimensional one. Imagine, for example, a long, straight Lomer—Cottrell lock
with a glissile dislocation on a parallel plane trying to overcome it along its
entire length; or a dislocation pinned along its entire length by a Cottrell
cloud, from which it is trying to break loose. These are cases of isolated linear
barriers (repulsive in the first case, attractive in the second). Even a periodic
variation of the element resistance in one direction is a linear barrier at every
position; examples are the periodic variation of the core energy of dislocations
in the Peierls model, or the periodic variation of the elastic energy of disloca-
tions, such as could occur in certain spinodally decomposed alloys or in a
slip plane parallel to an array of straight parallel dislocations whose stress
fields cause a periodic variation in the element glide resistance.

In all of these cases, the dislocation has an alternative to overcoming the
barrier along its entire length: namely, to nucleate a “bulge” across the
barrier, which may then expand along the barrier (and possibly forward).
Nucleation would be necessary for this path, since the maximum stress for
overcoming the barrier is not reduced: only alternative equilibrium con-
figurations (unstable though they are) are introduced at lower stresses.

In these alternative paths, the length and shape of the dislocation is
changed. This introduces self stresses which, according to our definitions,
have to be added to the element glide resistance to obtain the line glide
resistance. Thus, in the one alternative, the line resistance is identical to the
element resistance, in the other it is essentially made up of the self stresses
associated with the “‘bulge” configuration.

The plane glide resistance may be less than the line glide resistance, in some
cases, by the formation of dynamic pile-ups. This possibility will be treated
in an idealized model at the end of this section.

Isolated Linear Barriers

Figure 24-1 depicts three idealized cases of isolated linear barriers: (a) a
repulsive barrier, in which the free energy of the dislocation shows a ridge;
(b) an attractive barrier, in which the free energy shows a valley; and (c) an
energy-storing barrier, in which the free energy shows a step. In all cases,
there is an identical positive glide resistance: in our artificial example, a con-
stant value #g gm OVver a distance § (eq. [23b]). The cases differ in the negative
portion of the glide resistance diagram, which is behind the barrier for case
(a), in front for (b), and absent in case (¢). Our analysis will show that,
contrary to common belief, the properties of the attractive and repulsive
barriers differ profoundly.

For a quantitative analysis that exhibits the principal features of the treat-
ment, let us simplify the case of an attractive barrier even further and assume
an energy valley of constant depth Fpnp and infinitely steep walls (Fig.
24-2a). A dislocation would then be in stable equilibrium at the bottom of
the valley for all stresses. An alternative equilibrium configuration under a
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ot
s

{a) REPULSIVE (b} ATTRACTIVE (c) ENERGY-STORING

FiG. 24-1. Free energy per unit length FeLem and element glide resistance T em
as a function of forward displacement y, for three types of linear barriers: (a)
repulsive, (b) attractive, (c) energy-storing.

TLINE
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{b)
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(a)

FiG. 24-2. () Dislocation in unstable equilibrium configuration along part of steep
energy valley; (b) resulting diagram of line glide resistance 7 ng vs. area a. (The
element glide resistance is a 8-function.)

: finite applied stress o (although an unstable one) is also shown in Fig. 24-2a.
i . In the “free” region (rgLem = 0), the dislocation assumes a shape so that its
; self stress 7gp; ¢ balances the applied stress everywhere (egs. [23c] and [23d]).
Q For an isotropic line tension £= & this is a circular arc of radius R given by

(eqs. [23¢], [23g))
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F
0 = TLINE = TSELF — -b—[;;—s- [24a]

The angle f between the «“free” and the “bound” dislocation at the edge of
the valley is given by the equilibrium between the two line tensions:

yms'cosﬁ = Fpis — FBIND: [24b]

(This condition was omitted in FISHER’s treatment, 1955.) In most practical
cases, the binding energy per unit length is small compared to the dislocation

line energy. Then B is small and one may expand the cosine; eq. [24b]
becomes

ﬁiA/Z%EB< 1. [24b']
DIS

For the simple case discussed here, it is a material constant independent of
stress. )
The area under the circular arc is, for small angles B,

.a=3%R B [24c]
With egs. [24a] and [24b'], and setting F pis= pb?/4, this gives a line glide
resistance diagram _
1 f 3/4 b
TUNE = —= (——“ﬁ‘?) L [24d]
V3 \2Fpis Va

which is plotted schematically in Fig. 24-2b.

It is useful for later applications to outline the procedure for more general
free energy profiles. Without actually deriving the line glide resistance dia-
gram, let us consider what differences there are between the triangular energy
valley (Fig. 24-1b) and the square valley (Fig. 24-2a). The triangular valley
has one important feature that makes it more realistic than the square valley:
the dislocation can be pulled out of it mechanically at a finite stress, the
maximum element glide resistance Fgiem- A second difference is that the
gradual change in line energy, rather than the abrupt one, leads to a gradual
“bend’’ in the dislocation (Fig. 24-3) rather than an abrupt kink (Fig. 24-2a).

The shape of the bulge can be treated quantitatively in a rather easy way
on the line tension model. If « is the Jocal curvature and d¢ an element of the
dislocation line, we have

b dy’
d [ d — SELF 24
Fr=wdi=—c"Gnp [24c]
or
B ¥y
[ & sin B df’ = f (reLem — ©) b 4y [24e’]
0 0

The integral over Tgiem is, by the definition [23b], the free energy change of
the dislocation element. If we call AF s the positive difference from the
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FiG. 24-3. “Triangular” valley of dislocation free energy, and an equilibrium
“bulge” in the dislocation (consisting of three circular arcs), under an applied
' stress o.

bound state at y = 0 (Fig. 24-3), integration of [24¢’] for an angle-independent
line tension* & = F s gives

AF pis(y) — oby

1 —-cospB = s [24f]
DIS
or, using an approximation for small angles § as before,
B - //2 A‘g—DIS(y) - Uby' [24f’]
'g—DIS

This equation describes the inclination B8 of the dislocation as a func-
tion of its forward displacement y for any linear barrier described by

- AFpis(y) <€ Fps. In particular, it shows that the maximum value f, or

the inflection points of the bulge, occur where the difference between the free
energy change and the work term is largest. In our special example, this is at
y = 6, where

f— 23",,““, — obd

— (triangular valley). [24g]
‘?DIS

Comparing this to eq. [24b'] for the square valley, we find that B now is stress

* Actually, one should use &epge for a screw and 'screw for an edge, as can be shown
by the method employed later (sec. 25) for discrete obstacles. To appreciate the importance
nf colacting the nranar valne. see Table 2-11.
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dependent: at zero stress, the two cases are the same, but as the applied
stress o rises in the present case, the bulge moves back closer and closer to
the edge of the plateau and more of the dislocation line “climbs up” the
inclined ridges until at ¢ = ferem the entire dislocation line lies parallel to
the edge of the plateau.

The shape of the dislocation beyond the inflection points is identical in the
two cases, since here Tgrem = 0. (It is a circular arc in the constant line tension
model.) On the slopes of the energy valley in the present case, we also have
circular arcs (eq.[24€']), since TeLem is here constant in this particular example.
These circular arcs replace the sharp corners in the dislocation in the square
valley (Fig. 24-2a).

One might then approximate the shape of the bulge by the single circular
arc shown in Fig. 24-2a, using the expression [24g] instead of [24b'] for .
Inserting this value into the expression [24c] for the area swept, and retaining
eq. [24a] for the line glide resistance gives

va = Zos .(2.w)3/2-J§ [24g']

TLINE b F DIS

Now, a becomes zero at a finite value of rpng, Namely #Line = FELEM-

AFpis

—y

slope ob

FiG. 24-4. Repulsive linear barrier with equilibrium bulge in dislocation under an
applied stress .

Another important consequence of the general equation [24f] is the location
of the turn-round point, or maximum excursion, of the bulge. It occurs where
the total work done on a dislocation element precisely balances its free energy
change. This is illustrated by 2 simple construction in Fig. 24-3. (It is inde-
pendent of any assumptions on line tension, self stresses, or the smallness of
B, see eq. [24e].)

It is this observation that makes repulsive linear barriers profoundly
different from the attractive ones discussed up to now. As may be easily
seen in Fig. 24-4, the line of slope ob now always cuts the free energy diagram
inside the barrier itself; thus, the maximum excursion of the bulge is the
barrier width. In the attractive case, it can go far beyond, particularly at low
stresses.
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The energy-storing barrier (such as an antiphase-boundary, in which a
ledge of finite additional energy is left behind if a dislocation crosses it)
would show properties much like an attractive barrier. In fact, the attractive
barrier is an energy-storing barrier from the “bound’” state on forward. It is
what happens before the dislocation reaches its initial state that makes an
attractive barrier different from a repulsive one.

Periodic Linear Barriers

From the above discussion, it is evident that there is no difference at all
between nucleation over repulsive isolated barriers and over periodic barriers:
the equilibrium bulge never goes far enough to come into contact with the
next ridge (Fig. 24-4). In sec. 51 we will treat various models of thermal
activation over a Peierls barrier. One of these is, despite the atomic scale of
the energy variations, based on a line tension approximation and is, there-
fore, exactly equivalent to the case under discussion here—and would also
describe isolated repulsive barriers.

For small bulges in essentially straight dislocations, a double-kink model may be
more appropriate than a continuous-bulge model. It turns out to give very similar
answers (see sec. 51). In order to show some basic properties of kinks, let us here
gzv&; )a brief description of equilibrium configurations in a periodic square valley (Fig.

AFpis

@ | UL,

AS ISOLATED
ATTRACTIVE BARRIER

_)DC_ /‘1—-\ | ,"/\WITH x=0

i
!
!
i
!

£ DETERMINED BY

B KINK INTERACTION
1 /
__/_\_— I ’
’Di i ‘:v

a

(b) (c) (d)

Fi1G. 24-5. Periodic square energy valley (a), at various stresses (b), with equilib-
rium dislocation configuration (c); plot of line glide resistance vs. area swept (d).
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Firstly, we must observe that for high stresses this case is identical to that of an
isolated attractive barrier: so long as the maximum excursion of the bulge has not
reached the drop-off of the energy into the next valley. Below this critical stress, the
arc that must exist on the *‘high plateau” in equilibrium with the stress is interrupted
by the new valley. The position of the two arc pieces along the length of the ridge is
now indeterminate: the extra free energy that the length of dislocation in the new
valley has at finite stresses is precisely supplied by the external work done when the
“kinks” are moved apart (eq. [24f], Fig. 24-5b). The line glide resistance diagram
(Fig. 24-5d) shows as a dotted line in the area between the two kinks when this
length x (Fig. 24-5¢) is zero.

The indeterminacy is resolved by taking into account the elastic interaction
between kinks. The known solution for sharp kinks should be approximately
applicable when x > 0. For kinks in a screw dislocation, the interaction energy is
(see, for example, HIRTH and LOTHE, 1968, p. 230)

FINT pb?8 1+ v ub?8?
KINKS ™ 2, ¢ 1 —»v  4n%

[24h]

where.? is the average spacing of the kinks, i.e. the distance x plus the kink width w.
This gives a glide resistance diagram

pbd3

r — JINT
LINE KINKS = g3

[24h’]

which is also plotted in Fig. 24-5d. It should be important at very low stresses, but
loses its significance where the average kink spacing.#Z = a/$ becomes equal to the
kink width.* This occurs at the stress where the ‘‘kink interaction” curve in Fig.
24-5d cuts the dotted line for x = 0. .

The intermediate range of stresses cannot be treated adequately by either one
of the simple models: the bulge is neither a circular arc, nor does it consist of well-
separated kinks. It seems nevertheless likely, or at least possible, that the qualitative
feature of the composite diagram in Fig. 24-5d is retained and the area goes through
a minimum at intermediate stresses.

The Plane Glide Resistance (Dynamic Pile-ups)

The isolated linear barriers discussed above are an extreme case of a non-
uniform element glide resistance: Tgyeum is zero almost everywhere and has
high positive (and negative) values in some isolated places. In a real crystal
the resistance between the barriers would be finite, but it might be negligible.
In the case of a periodic variation of the element resistance on a macroscopic
scale, for example due to internal stresses, the amplitude would vary from
place to place, as sketched in Fig. 24-6a, and this can have profound effects.
Moreover, the peaks in the line glide resistance are fairly isolated even when
the element resistance is periodic because of the diminishing influence of the
self stresses past nucleation.

Let us idealize a crystal with a heterogeneous distribution of line glide
resistances (Fig. 24-6a) by the diagram shown in F ig. 24-6b: the regions with
small amplitude are smoothed out into a friction stress r,, but there are

* The kink width w assumed in the above comparison follows directly from the kink
height 8 and the angle B given in eq. [24b’]; for Fomo/Fors =~ 1072, w =~ 78,
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FiG. 24-6. Heterogeneous distribution of line glide resistances and their description
in an idealized diagram.

isolated regions of an extra contribution Ar to the line glide resistance, L
apart. It is immaterial for the following whether the barriers are repulsive,
attractive, or of the energy-storing kind.

Dislocations can now move in the “weak” regions at stresses, at which
they will still be held up at the “strong” barriers. They will then exert back
stresses on subsequent dislocations in the weak regions, but these may never-
theless move before the first dislocation can overcome a strong obstacle,
provided the resistance heterogeneity Ar is large enough. In this way, a pile-
up is formed—although, with realistic glide resistance variations such as in
Fig. 24-6a, the dislocation spacings in it may be far from those in an ideal
pile-up, and although the pile-up may, in real crystals, be blunted by spread
of slip into parallel planes.

The process ends at steady state when, for each dislocation that is added to
the group at the rear, one leaves at the head. When this happens at all strong
barriers in the slip plane, slip over the entire plane can occur. This will take
place at a stress lower than r; + A7 because of the stress concentration at
the head of a pile-up.

From a macroscopic point of view, the dislocation joining the pile-up is
indistinguishable from that leaving it: a “relay race” of many successive
dislocations is like a straight-through race of a single one. The dislocations
in the pile-up may, then, be viewed as a dynamic part of the obstacle structure
resisting a single dislocation: their stresses serve to smooth out the hetero-
geneities of the glide resistance (KUHLMANN, 1951; BASINSKI, 1959).

A quantitative calculation of the slip resistance leads to the Hall-Petch
relation (PETCH, 1958).
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mpLane = 71 + ke L7 [24i]

The constant kp will be derived for an ideal pile-up in the following, since
it will be needed further on.

At an applied stress ¢ = 7pLane, ONE dislocation can penetrate the ‘‘strong”
barrier, moving forward by a distance 8y,. Let all other (n — 1) dislocations i move
forward by 8y, into their new equilibrium positions. Equating the total work done
with the total increase in free energy, both per unit length, gives (COTTRELL, 1953)

n

n
Z body, — Z bry 8y + b Ar 8y, 124j]
1 1
If all sy; were equal to 3y., we would immediately have
A
TpLANE = Ty T+ 77' [24k]

This is obviously true when n = 1; for larger n, and depending on the exact geo-
metry, the second term must be multiplied by a constant such as =/4 for a double-
headed, large, linear pile-up (ESHELBY et al., 1951 ; LEIBFRIED, 1951). Equation [24k]
shows the paramount feature of dynamic pile-ups: they smooth out the variation
in glide resistance.

The steady-state number 7 is obtained by setting

TpLane = 0 = 75 + Tack(?) (steady state) [24¢]

where, again within a geometric multiplier of order 1,

b
Teack(M) = n % [24m]
Elimination of » gives
TpLANE = Ty VA7 7aack(l) [24n]
or
ke ~ v/ ubAr. [240]
Equations [24n] and [24i] hold under the important proviso that n > 1 or ‘
pb

[24p]

Ar = Taack(l)

L

At and below this value, the maximum plane resistance (eq. [24n]) is equal to the
maximum line resistance.

An important special application of eq. [24n] is that of dislocations moving
through a field of parallel static pile-ups. Suppose these to be idealized as an array
of super-dislocations of strength mb and spacing L, which we model as internal
stress peaks after the manner of Fig. 24-6b. Then

7, =0; Ar=m—E. [24q]
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The plane resistance is
— ub
TPLANE — Vm % = pb \/}; [24r]

where p~1/2 is the volume density of all dislocations. In other words, the glide
resistance does not depend on how a given number of dislocations is arranged: if they
form groups, then so do the mobile dislocations, and the effect cancels completely.

The idealization of an array of static pile-ups as a box-like internal stress pattern
(Fig. 24-6b) is, of course, an over-simplification. In reality, the centers of internal
stress (the pile-ups) are diffuse, and lead to an internal stress which, while it varies
with position, is smoother than that assumed above. The net results must be a
glide resistance which lies between the lower limit (zbp*) calculated above by per-
mitting dynamic pile-ups and the upper limit [zb(mp)*] obtained if the mobile
dislocations move singly.

Kink Motion

We have considered the stress necessary to nucleate a loop or a pair of
kinks. There may also be a resistance to kink motion. This may be in the form
of internal stresses, of a lattice resistance, or of isolated barriers like solute
atoms or vacancies. Since kink motion is by its nature one-dimensional, the
kink resistance diagrams (rgnx VS. X) for these three cases are identical in
form to the g ey V. ¥ diagrams we have used to describe the various kinds
of linear barrier to the motion of dislocations (Figs. 24-1, 24-5a).

Alternate paths of lower resistance are here not available. The possibility
of lowering the critical stress for long-range motion by the formation of
dynamic pile-ups, however, does exist in the case of isolated barriers or of
not-strictly-periodic internal stresses. When there is a number of kinks in a
kink pile-up, their back stresses are merely another way of describing the
self stresses of the dislocation line in which they lie. Thus, appropriately
enough, the transition from 7y ng tO Tprane in the case of dislocations corres-
ponds to the transition from 7gyem t0 TLINE in the case of kinks.

25. DiSCRETE OBSTACLES

Linear barriers were a one-dimensional idealization of the general element
glide resistance diagram. The two prime parameters were the height and the
spacing of the energy “‘ridges” or “valleys”” on the glide plane. A third para-
meter, important for a calculation of the plane glide resistance, was the
dispersion of the heights. Finally, for applications in thermal activation, one
will have to know the profile of the typical barrier. In a mathematical model,
one may say that linear barriers correspond to a one-dimensional Fourier
analysis of the element resistance, of which the amplitude and wavelength
of the first term are the two most essential parameters.

Similarly, discrete obstacles are a two-dimensional idealization of the general
element glide resistance. They describe obstacles to slip whose dimensions are
Vmitad in hath directinne in the slin plane (although not necessarily perpendi-
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cular to it). Particles and voids, precipitates and possibly individual (inter-
stitia]) solute atoms are discrete obstacles; so are dislocation loops that cut
the slip plane and even those that do not, by virtue of their stress fields. The
limits of the obstacle do not have to be sharp, they merely must be sharp
enough for it to be treated as an individual: the element resistance profiles
of neighboring obstacles should not overlap. In the present idealization, we
will treat them as sharp, although generally of finite extent. .

'The two prime parameters of a discrete obstacle structure are the height
and the spacing of the energy “hillocks” (or “wells’) on the glide plane. A
third parameter, important for a calculation of the plane glide resistance is
their dispersion: in this case, a dispersion of the spacings, through an aperiodic
arrangement of the obstacles in the slip plane, is as important as a dispersion
in the height. Again, one may think of this idealization as a two-dimensional
(though usually isotropic) Fourier analysis of the element glide resistance
diagram, with the amplitude and wavelength of the first term being of prime
interest.

Self stresses, in the case of linear barriers, were nonexistent along one path
(the movement of straight dislocations), all-important along the other
(nucleation of a double kink or a loop). In the case of discrete obstacles, self
stresses are due to the bowing of dislocations between the obstacles and are
always present. However, their effect averages out to Zero for some of the
macroscopic properties.

The Element Glide Resistance and the Resisting Force

Consider the simplest sort of discrete obstacle: one with a width w small
compared to its spacing . (center-to-center distance) from the next obstacle,
and independent of y (Fig. 25-1). Any element of dislocation between two
obstacles experiences no resistance to its motion, since the obstacles are dis-
crete and exert no influences outside their width w. But an element of width
w at an obstacle experiences a resisting force to its motion in the y direction,
due to a change in the (Helmholtz) free energy F of the crystal:

K

i

&g

= J reLem b 4X = TeLEm bw. [25a]
0

This resisting force can have one of three general forms. First (Fig. 25-2a),
free energy may be stored when the obstacle is cut, leading to an element
resistance that is positive everywhere. Examples of such energy storing
obstacles are the formation of a slip step at the surface of a precipitate; the
creation of an anti-phase boundary in an ordered precipitate, or the creation
of a jog in a forest dislocation. Second, the frec energy may rise and fall again
as the obstacle is cut (Fig. 25-2b). Examples of such energy hills, or repulsive




42 THERMODYNAMICS AND KINETICS OF SLIP
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FiG. 25-1. Schematic element glide resistance contours of a pair of discrete
obstacles.

w-y
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Fic. 25-2. Schematic free energy and glide resistance diagrams for (a) energy
storing obstacle, (b) repulsive obstacle, (c) attractive obstacle.

obstacles, are coherent particles of larger shear modulus, or in which the
stacking fault energy is larger than in the matrix; or any constrictions that
may have to be temporarily formed in forest or mobile dislocations while
they cross. Finally, the energy may first fall, then rise again (Fig. 25-2c).
Examples of such energy valleys, or attractive obstacles are voids; coherent
particles with lower shear modulus; or “attractive trees”, i.e. forest disloca-
tions that react with the mobile dislocation. Stress fields from misfitting
particles, from dislocation loops, etc., act equally often as attractive and as
repulsive obstacles.

To obtain some order-of-magnitude estimates, let us say the obstacle is of an
average depth y, and set

ALY
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For many obstacles—for instance, forest dislocations, loops, voids, internal stress
peaks—rgLem cannot exceed the theoretical shear strength of about #/30. Then an
obstacle of atomic dimensions (w ~ y, =~ b) cannot have an interaction energy F,
of more than pb?/30, or a few tenths of an electron volt. If such obstacles exhibit

interaction energies of order pb*—a few eV—then they must be at least 5b wide and

deep. :

Certain solute atoms could behave differently. If the solute atom forms a strong,
localized bond with its host (as carbon or nitrogen in iron may, for instance), then
the bond must be broken and reformed as the dislocation moves. This energy of
bond breaking could be as large as the activation energy for diffusion—about 1 eV
for the atomic-sized obstacles (C and N) quoted above. :

The Line Glide Resistance and the Force on the Obstacle

The line glide resistance was defined (eq. [23¢]) to be the sum of the element
resistance and the self stress; in equilibrium, it must equal the applied stress
o everywhere along the dislocation (eq. [23d]). To make this possible, the self
stress must vary between two extreme limits in the presence of discrete
obstacles: near the obstacles, it must counterbalance the high element resis-
tance (minus the comparatively low applied stress), by developing a strong,
concave-forward curvature; between the obstacles, the element resistance is
zero and the self stress must balance the applied stress only, by developing a
gradual, concave-backward curvature.

In one particularly simple case, we have seen (eq. [23q)) that a certain
average of the self stresses must vanish despite these severe variations: namely,
the forward component averaged over a quasi-straight piece of dislocation
moving forward as a rigid body. Then, the average element resistance equals
the average line resistance (eq. [23r]) which in turn, in equilibrium, equals the
applied stress (eq. [23d]). Applying this to a piece of dislocation held up at
two identical obstacles for motions perpendicular to their connecting line

‘(Fig. 25-1) gives

TLINE ble = K [250]

since the element resistance is assumed zero outside the region w. Equation
[25c] is a frequently used relation; it applies only under the rather severe con-
ditions imposed above, and some other very special cases to be discussed
below. In these cases, we find from eq. [25a]

TLINE = ‘l—v TELEM- [25d]

In words, for discrete obstacles, the line resistance is reduced from the element
resistance by the ratio of width over spacing.

Equation [25¢] looks exactly the same as one that would have been derived for a
rigid, straight dislocation: the Fi»ghl—hand side is the total force exerted on it, the
feft-hand side is the total resistance it experiences. Any effect of the bowing appears
to have vanished. However, unless the obstacle has as ideal a shape as that illustrated

DN
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FiG. 25-3. The bowing of the dislocation determines the regions of the obstacle
that are being sampled at any one stage.

in Fig. 25-1, the bowing does have an influence on the value of the resisting force X
in different successive equilibrium positions: the shape of the dislocation determines
the regions of the obstacle that are being sampled. Figure 25-3a shows this for
circular obstacles, Fig. 25-3b for ribbon-like obstacles oriented skew to the x-
direction. (Here, the force in the ribbon, which is physically prescribed, is not equal
to K, Kocks, 1968.) Finally, Fig. 25-3c shows the case of an element resistance that
is due to a self-equilibrated stress field (such as that experienced by a screw disloca-
tion near a misfitting particle, GLEITER, 1967). Here, the effect of the bowing is
especially drastic, since the net force on a straight dislocation of the same average
orientation would be always zero.

Another consequence of an arbitrary obstacle shape is that the distance 8y of
forward movement is then not as easily defined as for the idealized obstacle shown
in Fig. 25-1. Yet it would be a useful quantity to complement the force X resisting
forward motion. We choose a definition so that

8F = K8y = roine bda. [25€]

In most cases of practical interest, the dislocation will not overcome a series
of obstacles simultaneously, as it would have to if the forward displacement
were constant along the dislocation as we have assumed above. Instead, it will
tend to overcome one obstacle at a time. This should be so for two reasons:
first, thermal activation does not take place simultaneously at many obstacles
even when they are stressed identically, as in Figs. 25-1 and 25-4a; second, in
realistic cases, the obstacles are not in identical positions with respect to the
dislocation: they are neither collinear nor equidistant (Fig. 25-4b). In this
case, self stresses contribute in an important way to the force on the center
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(a)

FiG. 25-4. When discrete obstacles are collinear and equidistant (a), the self stresses

average out to zero; but in the more normal case (b), self stresses contribute

significantly to the force on the obstacle. The insert (c) is used in the derivation of
the line tension construction.

obstacle: the dislocation is getting shorter as it moves forward. Then, the
simple relation [25¢] is no longer true; putting it another way, the force obX
no longer points in the *“forward” direction, to balance the “back” force K.

Figure 25-4a illustrates that, for the special case of a periodic distribution
of discrete obstacles, which are small in extent compared to their spacing,
eq. [25¢] still holds. This is the geometry so frequently assumed.

For the more general geometry shown in Fig. 25-4b, a similarly simple
relation can, however, be obtained, if one assumes the line tension approxima-
tion, and lumps together the effect of the self stress with that of the applied
stress to make a force on the obstacle (Kocks, 1968). For this purpose, we
write the local free energy balance (including work terms) as follows:

(K — obw) 8y = E-28¢ + obX &Y. [25f]

With the symbols as they are defined in Fig..25-4c, we see that the first term
on the right is the change in line energy* of the free dislocation branches on
either side of the obstacle, and the second term is the work done by the
external forces as the free dislocation branches move. The branches are
assumed pivoted at the two next obstacles on either side.

The simplification comes about when one replaces, in the same line tension
approximation, the term ¢bX by 2E sin B, where 8 is the bow-out angle, and

*E is an effective line tension defined in eq. (25n).
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FiG. 25-5. Line glide resistance versus area swept: by forward translation through

the obstacle (- ---), by bowing between the obstacles (—-—), and by both

processes combined (——), for increasing obstacle spacing (a, b, ¢). In (c), the
obstacle is bypassed rather than cut.

realizes that sinf 8Y = 8¢'. Then, the entire right-hand side becomes a single
term equivalent to the “line tension construction™:

(K — obw) 8y = 2E cos ¢ -8y (line tension approx.) [25g]

or, when the width of the obstacles is negligible compared to their spacing:

K=2Ecos¢ w<l) [25g']

This equation expresses equilibrium between the obstacle resistance K and the
force on the obstacle 2E cos ¢.

Let us now plot the line resistance for one dislocation segment as a function
of the area swept out between two obstacles. This area has two additive
components: one due to the change in bow-out between obstacles, and one
due to the proportional forward translation of the entire segment, /. long,
due to the compliance of the center obstacle, for example according to the
element glide resistance diagrams shown in Fig. 25-2a. Figure 25-5 shows
three cases: (a) when the contribution from bowing is smaller than the
obstacle compliance; (b) when it is larger; and (c) when dislocation bowing
dominates the compliance. The situation (c) must arise whenever the obstacle
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spacing is large, since the bowing compliance is proportional to the third
power of the obstacle spacing: geometric analysis of a circular arc for small
bow-out angles shows, with eq. [23j], that initially
L ab
dpow e (. —w). [25h]
As illustrated in these figures, the effect of the bowing is that the element
glide resistance diagram (Fig. 25-2a) is sheared parallel to the area axis. Thus
the width of the profile at any stress level is not affected; this is the most
important parameter for thermal activation. However, the severe slant dis-
played in Fig. 25-5b is significant for two reasons. On the left side, where the
dislocation comes from, it gives the actual spring constant felt by the disloca-
tion in front of the obstacle, which controls its vibrational frequencies and
influences whether these vibrations are overdamped or not. On the right
side, it shows how the energy stored in the bowed-out dislocation gets
dissipated immediately (shaded area), when the segment is released at the
unstable point at the obstacle.

- [FDIPOLE
K - FEDGE

b

FiG. 25-6. The limiting effective strength of an obstacle is given by the free energy
per unit length to draw out a dipole.

Finally, Fig. 25-5¢ shows a case where the bowing compliance is so large
that the dislocation segment becomes unstable by ‘‘Orowan looping”
(OrROWAN, 1948) before the elements in front of the obstacle have moved to
the point of maximum resisting force. Then the obstacle will never get
penetrated, it will get surrounded. (In principle, a dislocation loop will then
be left around the obstacle, which tends to shrink under the applied stress and
its own high self stresses, and may thus eventually shear the obstacle.)

To derive this limiting effective strength of any obstacle, it is important to
remember that the dislocation segment in front of the two obstacles con-
sidered cannot be isolated, but must be connected to other elements of
distocation line. They will tend to bow around the far sides of both obstacles
(Fig. 25-6). An unstable dislocation shape is reached, when the two dislocation
branches surrounding a single obstacle form'a dipole, which may be extended
by a rigid forward movement of the segments between the obstacles. The
limiting effective resistance force of any obstacle is, therefore, the energy to .
draw out the respective dipole (AstiBY, 1966): »

M
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b2, w
(1 — }1}) Kince € Fscrew-pipoLe = B In —,
I, 20 r, [25i]
1
pb?

w
1- 5k < Fence- =_* nl
( I ) SCREW EDGE-DIPOLE 277(1 — V) r.

€

This limit is always lower than that to make an isolated half-loop, since the
latter would involve the particle spacing as an outer cut-off radius in the
logarithm, not the particle diameter.

The Effective Line Tension

We have seen that, during the virtual variation which corresponds to the
overcoming of one discrete obstacle by a dislocation segment, the bowing
of the free parts of the dislocation only played the role of the relaxation of
another internal parameter to equilibrium; it had an influence only on such
secondary problems as precisely which average of the element glide resistance
is measured through the resisting force K.

There are other applications in which it is essential to have some know-
ledge of the shape of the dislocation between the obstacles. The most promi-
nent one is the case where the crystal contains more than one pair of obstacles
and more than one segment of dislocation line. One must then know, before
one treats a particular obstacle pair, whether the dislocation segment between
them encounters another obstacle while it bows out to equilibrate its self
stresses, or whether it encounters (and possibly annihilates with) arother
segment of dislocation, such as the one on the far side of either obstacle along
the same dislocation. The answer to the first question depends primarily on
the area swept by the segment during bowing, that to the second question is
determined by the angle the dislocation makes with its average direction, at
the inflection point near the obstacle. Both of these parameters depend on the
effective line tension of the dislocation

In the free regions between the obstacles, self stresses are the only contri-
bution to the line glide resistance and, in equilibrium, this must be constant
and equal to the applied stress:

ToSF = TLINE = O (equilibrium). [25]

In the general case, in which the self stresses depend on the shape of the
entire dislocation line, eq. [25]] determines this shape; more specific state-
ments can only be made by detailed, usually numerical, calculations.

When the self stress depends only on the local shape (namely, the curvature
«), eq. [23j] provides a differential equation for the dislocation line (Fig.
25-7):

&(a) % = bryng  (line tension approximation) [25k]
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FiG. 25-7. Balance between the effective line tension E of a dislocation arc and the
force exerted on it by an applied stress a.

With
.= ‘z_ﬁ' — siny’ % [25¢]

and the equilibrium condition [25]], it can be integrated over the average
direction x of the dislocation line (assuming that & is an even function of §'):

=y

f Ea(y’) sin ' dyp’ = ob(l. — W) (equilibrium). [25m]

¢ ]
Here, ¢’ is the angle between the dislocation element and the y-axis (Fig.
25-7), and the dependence of the line tension & on the angle o between line
element and Burgers vector has been replaced by a dependence on Y’ and on
the character of the dislocation before it started bowing, which is defined by
the average angle a (@ = 0: screw, @ = w/2: edge).

The unknown in eq. [25m] is the integration limit, ¢, the complement of the

bow-out angle. For convenience, let us define an effective line tension

5 [ eaw)ysinyg’ dy
. —
z W=7 ’[2511]
f sin ' dy’
¥
which is defined such that eq. [25m] becomes
2E cos ¢ = ab(l, — w) (line tension approximation). [250]

Figure 25-7 illustrates this equation in terms of the “line tensior: construction”.
For a collinear array of obstacles, or any quasi-straight dislocation piece,
where the complement of the bow-out angle, ¢, equals the half cusp angle ¢,
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we regain (egs. [25g], [250])

K = 2E cos ¢ + obw = obl, (line tension approximation, [25p]
quasi-straight dislocation).

It can now be seen that the same procedure (eq. [25m]) could have been used
on the length of dislocation around the obstacle, which would have yielded
the first equation [25p] with a similar definition [25n] of the (local) effective
line tension.

The effective line tension E introduced in eq. [25n] is equal to the line
tension and to the line energy, if these are orientation independent:

2
E=6=%p ~ f%)_ (constant line energy approximation). [25q]

In the more general case that the orientation dependence of the line energy
is given by isotropic elasticity theory, the extreme values of the effective line
tension, namely those applicable to a dislocation that starts out either as a
pure screw or as a pure edge, can be derived from egs. [23k], [23m], and [23n]
to be (Fig. 25-8):

1 . 1
Escrew = F screw {1 iy sin® ¢ +

cos? ¢},

— v 1—v

¥ sin? ¢ + cos? ¢>},

-V

1—2
.EEDGE = -g'—scmsw { 1

or, equivalently,

Escrew = S'screw Sin? ¢ + Fppoe c0s* ¢ (isotropic [25r]

EEDGE = éaEDGE sin? qS —+ '?SCREW cos?2 (]S elasttczty).

The latter form of these equations conveys directly that, for small bow-outs
(large ¢), the effective line tension is equal to the line tension of the original
dislocation, for large bow-outs it is equal to the line energy of the side
branches. For this reason, we prefer eqs. [25r] to the otherwise equivalent
treatment employing both line fensions and line torques (see, for example,
BrowN and Hawm, 1971).

Equation [250] was derived (using the definition [25n]) without any reference to a
particular line shape such as a circle. In fact, it was specifically assumed that the
curvature everywhere adjusts itself to the local value of the line tension, such that
the product be constant. With the assumptions of isotropic elasticity theory, the
shape of the dislocation segment will then approximately be an arc of an ellipse.
Let us now, in an approximation that turns out to be very good, describe the shape
by a circular arc, spanning the same obstacle distance and starting with the same
angle ¢ as the true shape does. The radius R of that circle is then, by geometry and
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R= = _ [25s]

with the same eﬂebtive line tension E, defined in eq. [25n]. The area swept follows
immediately as

2
asow (0,8) = (oEb) {% — ¢ — sin ¢ cos ¢}. 125t]
Expansion of this formula for small bow-outs (¢ =~ n[2) gives
” 3
asow (R.$) = § R? (5 - ¢) 25u]

which led to eq. [25h].
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Fic. 25-8. The dependence of line energy % and line tension ¢ on the angle a

between line direction and Burgers vector and of the effective line tension E for

an initial screw and an initial edge dislocation on the bow-out angle (7/2—4¢).
Isotropic elasticity theory.




52 THERMODYNAMICS AND KINETICS OF SLIP

The orientation dependence of the effective line tension having been fully
discussed, the question remains, which outer cut-off radius X should be
inserted into the logarithmic term in the line energy, eq. [23h), which enters
E (eq. [251]), to account for interactions of different parts of the same disloca-
tion with each other.

In the case of Orowan by-passing, we have seen (eq. [25i]) that the inter-
action of the two branches of the dislocation on either side of each obstacle is
all-important. On the other hand, the bowed-out dislocation between the
obstacles may not be much affected by this dipole interaction. The computer
calculation of equilibrium dislocation shapes by BACON et al. (1973), which
is based on a self-stress model rather than on a line tension approximation,
does in fact show that the major portion of the bowed-out dislocation between
the obstacles is well described by a line tension with an outer cut-off radius
X =1 (More exactly, X =1, — w, which is here approximated by the
average inter-obstacle spacing / to be introduced in eq. [25aa).)

Combining eqs. [23h], [23i], [23n], and [25p] and [251], we obtain the final
relation, in isotropic elasticity theory, between the strength K of an obstacle
and the cosine of the breaking angle

f=cos¢ [25v]
as follows:
b*> In lr, 1

Kscnxzw:f'—-“ S, I (L +v—uf?): s

1—v 27 1— W/Ie
b2 In Ur 1 [25w]

Kepge =f- 22D 9 D) P —

EDGE fl—v o ( V‘*‘Vf)l_w/le

We shall often use f as a measure of the obstacle strength. When orientation
effects can be neglected, and when the width of the obstacles is small compared
to their spacing, we have simply

K

~ 25w’
S 3E [25w']
The quantity f is a geometric parameter that can be obtained from macro-
scopic measurements and an appropriate statistical theory. When I, is known,

we have from eqs. [250] and [25q]:
o~ f pb
I —w

[25x]

The possibility of Orowan looping limits the possible values of f, by virtue
of egs. [25i], [25p], and [25v] to

f < ‘?D]POLE o« ln (W/I'o) [25y]

2E In{jr)’
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The somewhat artificial representation of the equilibrium shape of the dis-
location (Fig. 25-5) by two line tensions with different outer cut-off radii
results in the idealized shape shown in Fig. 25-9: the dislocation is kinked
near the obstacle by an angle given by eq. [25y] (BACON et al., 1973). For
reasonable values of w, [, and r,, the angle ¢ at the kink is usually larger than
45°,

-y — ] =

FiG. 25-9. Idealized shape of dislocation at the Orowan stress.

There is also a lower limit for reasonable values of the parameter f, the sine of the
bow-out angle. This limit is given by the condition that the maximum excursion of
the dislocation should be large compared to the lattice spacing for a continuum
description of line tensions to be applicable. When the excursion is smaller, it would
be more appropriate to treat the bow-out by the lateral travel of kinks; only when
many kinks are necessary is this equivalent to a line tension description.

This condition reads, from geometry,

f> ,’—’

Since, for small relative obstacle strengths f, the obstacle spacing must also be small
to give a non-negligible stress (eq. [25x]), the continuum model requires

f> JE [252]
‘L

or f> 1/100 fo; a > 107 *u,

The Plane Glide Resistance (Friedel Statistics)

As in the case of linear barriers, the plane glide resistance may be signi-
ficantly affected by any long-range heterogeneity in the /ine glide resistance;
in particular, the maximum plane resistance may be smaller than the maxi-
mum line resistance. Heterogeneities in the line glide resistance of discrete
obstacles may be due to a spectrum of obstacle strengths, as they were in the
case of linear barriers; but they may here also be due to a spectrum in
obstacle spacings: the line glide resistance of discrete obstacles depends both
on the element resistance of a typical obstacle and on the obstacle spacing
(eq. [25d]). Such heterogeneities in obstacle spacings are always present,
unless the obstacles are arranged in a regular lattice,
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FiG. 25-10. An aperiodic line glide resistance diagram (b) gives rise to a lower
plane glide resistance than a periodic one (a).

Figure 25-10 schematically shows the element, line, and plane glide
resistance diagrams for (a) a periodic arrangement of obstacles, (b) an
aperiodic distribution. The obstacle strengths were chosen the same in both
cases: the variation in the “amplitude” of the line glide resistance in Fig.
25-10b is due only to the variation in obstacle spacing. While the plane glide
resistance in the periodic case (a) reaches its maximum, beyond which no
equilibrium is possible, after a small area has been swept, the plane glide
resistance in the aperiodic case (b) approaches a much lower maximum in an
asymptotic fashion: at #p; sng, an indefinite area may be swept out.

That such an asymptotic maximum in the plane glide resistance must exist
has been shown by Kocks (1966). The reason is the essentially two-dimen-
sional nature of glide: dislocations are free to surround especially resistant
areas of the slip plane. The level of the asymptote is not only lower than the
maximum line glide resistance, it is also lower than the maximum in a periodic
array of the same area density. If one imagines the aperiodic arrangement to
be constructed from the periodic one by the removal of obstacles from some
regions and their accumulation in some others, the regions of less-than-
average density are bound to form a continuous area in the slip plane. A
clustered arrangement of obstacles, rather than merely a random one enhances
the effect: the asymptotic maximum is even lower (Kocks, 1969).

Applied stresses ¢ < #p.ane do not lead to long-range slip in this purely mech-
anical model; the term ‘‘plane glide resistance, rppane’ gains significance at values
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less than the maximum only when the possibility of thermal activation has been
introduced (Chapter 4).

Derivations of the asymptotic maximum plane glide resistance fall into

two classes, here called Friedel statistics and Mott statistics. In the remainder
of this treatise, we will discuss discrete obstacles only when Friedel statistics
are applicable; we shall outline the limits of their applicability in the next sub-
section under ‘“Mott statistics”.

FrIEDEL (1956, p. 205, or 1964, p. 224) provided a simple model for
asymptotic maximum plane resistance based on the steady-state propagation
of quasi-straight dislocation lines. In steady state, a dislocation released at
one obstacle must, in the average, pick up exactiy one more. This means that
the area swept by the dislocation after overcoming one obstacle must, in the
average, be equal to the average area per particle (assuming a random dis-
tribution). More exactly, for obstacles of finite width w, we may define
slip plane area

(+w?= [25aa]

number of obstacles’

Then, the square of the average inter-obstacle spacing | is a measure of the
average area in which one new obstacle is encountered and must, according
to FRrIEDEL (1956), equal the area swept:

dswepr = 12 (steady state). [25bb]

OswePT
R R -
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FIG. 25-11. Friedel’s steady-state condition: the shaded area must in the average
contain one obstacle point.

FrieDeL (1956) calculated the area swept for small bow-outs of two dis-
location segments of equal lengths between three collinear obstacles, assuming
circular arcs of radius R (Fig. 25-11). This assumption amounts to neglecting
any effects due to dislocation anisotropy or interaction, as well as any effects
of viscous drag on the dislocation shape. The result is
1(/, —w)?

AswepT — =

2 R

(6 times the bowing area given in eq. [25h]). Substituting for the numerator
from eq. [250], for the denominator from eq. [25s], and dividing by /2, we have

2
Gsweer _ (ZE) cos® ¢. [25¢c]

12 abl
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If the left-hand side is 1, by virtue of éq. [25bb], for o = 7p; sne, and if we
replace cos ¢ by the relative obstacle strength f (eq. [25v]), we have

TpLane = f3/? %5 [25dd]

The average center-to-center obstacle spacing (/ + w) is usually given
geometrically in terms of the volume fraction and the dimension of the
particles. For example, for uniform spheres of radius r, distributed at random
in three dimensions and taking up a volume fraction ¢, one has

I+ wr=r? 2—" [25ee]
3c

The average diameter of the circles formed by intersection of these spheres
with the slip plane is '

W =

r. [25ff]

NS TR

- The plane glide resistance (eq. [25dd]) then becomes

2E [3c 1
meuang = (P72 [ [25gg]
br N 27 1 —_V/3nc/8
or approximately
2E Ve
>R VIS | 25hh
TPLANE‘ f r1— Ve [ 1

For a more refined measure of the plane glide resistance, one needs to know the
distribution function of the obstacles and a criterion for large-scale slip. Figure
25-12 shows, in a qualitative way, the fraction P of peaks in the line resistance
diagram at or below a level #uig: it allows for a very few peaks at very low levels,
but assumes that to get all of them (P = 1) one has to g0 to very high levels. The
particular form shown is appropriate for a random distribution of obstacles of
uniform strength (Kocks, 1966). By contrast, a periodic arrangement of the same
obstacles would make all of the peaks in the line resistance appear at the same level
(dashed line in Fig. 25-12).

To derive the asymptotic maximum plane resistance, KOcks (1966, 1967) has
proposed a percolation criterion: the probability P must reach a critical value such
that, whenever the dislocation has overcome one obstacle, it will in the average be
able to overcome one more as a consequence. In the simplest case, this occurs at
P = 0.5. Figure 25-13 shows a piece of quasi-straight dislocation which, at a stress
at which it is released from one obstacle (B), must be able to move on to the left (A)
or to the right (C).

This theory has the remarkable feature that the asymptotic maximum plane
resistance, at which large-scale slip must occur, does not depend on the details of
the distribution of line resistances, only on the value at a certain critical penetration
probability. For example, this level does not depend on the maximum slope in Fig.
25-12, i.e. the half-width of the distribution. The value of FeLane thus makes for an
excellent first-order description of the obstacle structure.
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FiG. 25-12. Cumulative distribution of peaks in the line resistance diagram for
periodic and aperiodic obstacle arrays (schematic). The maximum plane resistance
corresponds to a critical probability, here for example chosen to be P = 4.
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F1G. 25-13. The condition for continued glide is that either the dislocation segment
AB’ or B'C is supercritical at the stress at which the dislocation gets released at B.
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FIG. 25-14. General dependence of normalized plane glide resistance s on normal-
_ized obstacle strength f.

Unlike the simple development of FRIEDEL where the ratio of the area swept to
the average area per obstacle was taken as 1, the more detailed statistical theories
such as that of Kocks (1966, 1967) and computer experiments such as those by
ForemaN and MaKIN (1966), involve this ratio as one important parameter, the
breaking angle ¢ being the other one. At the critical limit, for example when a
certain probability is reached, there exists a certain relation between these two
parameters. Together with eq. [25cc], this relation determines the plane resistance
as a function of f

2E
7pLane = S(f) E [25ii]

However, both of these statistical treatments have shown that FRIEDEL’s simple
development [25dd], which was an approximation for f < 1, actually holds very
well up to at least f ~ 0.5 (Fig. 25-14). This is in the neighborhood of the limiting
(Orowan) strength (eq. [25y]).
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Another way of looking at the results of a statistical treatment is that it
gives a relation between the average inter-obstacle spacing / and the effective
obstacle spacing I, we used before to describe a local situation. Comparison
of eqs. [25dd] with [25x] shows that

[ S — [25ii]
sV (ollpb)t”?
Note that this “effective’ spacing is the spacing between the critical obstacle
pairs that make large-scale glide possible, not the (generally larger) average
spacing of obstacles along a dislocation line in equilibrium with a certain
applied stress. The latter is what has been calculated in the most complete
form by LasuscH (1962). Its relation to the stress is almost identical to that
of FRIEDEL (1956). :
Equation [25dd] is the basis for relating macroscopic measurements of
the plane glide resistance to the microscopic properties of discrete obstacles:
their average spacing / and their relative strength f. If f = f characterizes the
peaks in the line resistance diagrams, 7p; ang is at its asymptotic value 7y sng-
If f characterizes a lower value, for example the effective obstacle strength
under the influence of a certain level of thermal activation, rp; sne Specifies
the level of the applied stress that would lead to steady-state planar glide
under those conditions.

The Plane Glide Resistance (Mott Statistics)

Above we have considered how the plane glide resistance can be obtained
for a random distribution of point-like obstacles that interact with a disloca-
tion only on contact. At zero stress, the dislocation was straight; at finite
stresses, all obstacles with which the dislocation came in contact opposed its
forward motion.

Real obstacles have a finite range of interaction w. If one introduced a
straight dislocation into a crystal at zero applied stress, it would be attracted
or repelled by all obstacles whose centers are inside a strip w wide around it.
Their average spacing along the dislocation is

1, = 12w [25¢¢]

where [? is again the average slip plane area containing one obstacle. The
dislocation would accommodate these interactions to some extent and would
not remain straight.

Even if the obstacles were truly points, but were attractive, the dislocation could
lower its energy by a certain amount of zig-zagging; this amount is determined by a
balance between the binding energy Fgino and the dislocation line energy. One can
easily derive that, if an effective interaction range

2F
Wertr = ?Bf 1 [25mm]
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is assigned to these point obstacles, their effects can be treated just like the finite-
range obstacles to be considered in more detail below. This effect also increases the
effective interaction range of finite-range attractive obstacles over that of repulsive
ones.

The forces exerted on the dislocation by the “obstacles” are now in part
forward and in part backward: the two signs must balance each other at zero
stress. As a stress is applied, the distribution changes until, at the critical
stress o = FunEs €quilibrium is not longer possible. The rather difficult
statistics of this process has been dealt with most extensively by LABUSCH
(1970). The question that concerns us here is primarily, under what circum-
stances the initial zig-zagging of the dislocation becomes irrelevant at the
flow stress, so that the Friedel statistics discussed above are in fact applicable.

FiG. 25-15. Initially straight dislocation bent by interaction with three attractive

“obstacles” of range w, at various stresses. The center obstacle exerts a “forward”

force at zero stress, no force at the intermediate stress, and a resisting force at the
highest stress shown.

Figure 25-15 shows that, for attractive obstacles, the “forward” forces on
the dislocation turn into “backward” forces at a stress where a bow-out arc
based on the length 2/, has an excursion of about w/2. (For repulsive obstacles,
the “forward”” forces vanish at a critical excursion.) If at this stress the break-
ing strength of the «hackward’’ obstacles has not yet been exceeded, the above
treatment according to FRIEDEL (1956), FOREMAN and MaKIN (1966) and
Kocks (1967) is justified; i.e. when the cosine of half the minimum cusp angle
fulfills the condition

I 2
with eq. [25££). Note that this condition is more restrictive than that which
specifies that the obstacles may be treated as discrete:

w_ w? . e
/= ITF (Friedel statistics) [25nn]
1

L; <1 (discrete obstacles). [2500]

Obstacles whose range of interaction w is dictated by their spacing /, even
if one treated them as quasi-discrete, would have to be quite strong before
Friedel statistics can even approximately be applied; forest dislocations are
probably a borderline case.
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FiG. 25-16. A map showing the range of applicability of Friedel statistics (eq.

[25dd]) and Mott statistics (eq. [25ww]), as a function of the normalized obstacle

strength f and the solute concentration ¢, for an effective interaction range w
twice the physical obstacle size b.

For solute atoms, I> = b?/c, so that (NABARRO, 1972)

;(‘—Z) =1 [25pp]

is the critical condition. It is plotted in Fig. 25-16, for the reasonable value
w = 2b. In the interesting stress range between the broken lines, only very
weak obstacles in fairly high concentrations, such as substitutional solute
atoms, fall outside the range where Friedel statistics are justified. (LABUSCH,
1972, gives a critical value of 1/36 instead of 1 in eq. [25pp] and thus finds
Friedel statistics rarely justified.)

We shall now give a brief outline of the basic features underlying various theories
of the yield strength when condition [25nn] is not fulfilled. They are primarily due

~ to MotT and NABARRO (1948), RippHAGNI and Astmow (1968), and LABUscH (1970);

with apologies to the other authors; we adopt the characterization given by NABARRO
(1972) to this type of statistical treatment by calling it “Mott statistics”. All
approaches of the above authors give the same result to within a numerical constant,
if the various detailed assumptions are made comparable (LABUSCH, 1972 ; NABARRO,
1972).

We start with a description of the shape of a quasi-straight dislocation in a field
of many weak discrete obstacles, As we have seen, an initially straight dislocation
would acquire small bends due to the various interactions, sorietimes in one
direction, sometimes in the other. Due to statistical fluctuations, a given length /,
may have an excess of one sign of bend or the other. If one assumes for simplicity
that the amamnt of each hend is alwavs the same, i.e. that the interaction a/ways has
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FiG. 25-17. Schematic of fluctuation in dislocation line shape at zero stress, when
it is bent by many weak obstacles of range w through identical angles fof randomly
distributed signs.

the average strength fand that the signs of the bends are randomly distributed, the
angle f, accumulated over n bends is, in the average,

fo=f Vn [25qq]

Over the length I, of this fluctuation, the dislocation will have an average curva-
ture (Fig. 25-17). If it is to stay within the strip of width w, as originally implied, the
height of the arc must be about w; this gives the condition

w = tlafa. [251r]

(Summation over repeated subscripts is here not implied.) Finally, the average
number of obstacles n in a strip of length I, and width w is
‘ Lw I

n=F = % [25ss]
The unknown /, can be eliminated from eqgs. [25qq), [25r1], [25ss], and a condition
for the equally unknown number n in an average fluctuation established:
‘ w?l
n3? = 72— }. (n > 1), [25tt]
Note that we have made the assumption of a large number n throughout; neverthe-
less, for n = 1, eq. [25tt] is precisely the condition [25nn] for Friedel statistics to
apply. The number n may be read off Fig. 25-16 for the case of solute atoms with
w = 2b: the largest it becomes is 12, in the bottom right corner of this figure. Thus,
it is probably necessary to take better account of the discrete bends than we have
. done above using circle geometry.
Over the length /,, there is a net backwards force K. = 2Ef,, even at zero stress.
If one applied a stress to balance this force, namely
K,

TPLANE — ’I')T
[

[25uu]
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the configuration should be unstable—presuming that the configuration does not
change much during the application of the stress. Another way of arriving at eq.
[25uu] is to say that the angle

Zh h

1 .
T 2R(7) z
accumulated in all the little arcs between two individual obstacles must just equal
fv—so that, under the stress =pane, the dislocation would just be straight. It is
evident that the changed cusp angles at all obstacles must in fact lead to earlier
yielding.
Taking eq. [25uu] for the plane glide resistance and inserting from the previous
equations for n and /,, we find

TPLANE = %?'f”z-n”‘. [25vv]

This is written as the Friedel formula [25dd] with a correction term n'/*. It thus
appears that Mott statistics must always give a higher flow stress than Friedel
statistics. On the other hand, eq. [25vv] contains a somewhat vaguely defined average
obstacle strength f whereas the Friedel equation [25dd], written also for zero
temperature, contains the maximum strength f A proper calculation would give a
smooth transition from eq. [25dd] to eq. [25vv], which was here derived for n > 1
only. .

The important difference between Mott and Friedel statistics is not so much the
absolute magnitude of the flow stress as its dependence on fand c. Inserting for n
from eq. [25tt], using /> = b2/c for solute atoms, and 2E = pub?, we get

w\ 1/3
TPLANE = l,,f4/3c213 . (Z) (Mott statistics). [25WW]

The functional form of this result is the same for all theories based on
Sluctuations in the sign of the obstacle interaction (LABUSCH, 1972; NABARRO,
1972). Proportionality constants of order 1 were here neglected.

Screws versus Edges

The propagation of slip over an entire slip plane requires that both screw
and edge dislocations move. The plane glide resistance is thus determined
by the ones that are harder to move (not the ones that are easier to move,
SEEGER, 1955b, and not some combination, GILMAN, 1969).

Equations [25dd] and [25ee] suggest, at first glance, that these are always
the screws, since their effective line tension is always larger (eqgs. [25r]). This
Is in fact true when f is independent of the character of the dislocation. As
one can see from the simplified form [25w] of f, this is only true when the
obstacle strength KX is itself proportional to the line tension. Discounting the
small differences in the exact, orientation dependent, line tension, the Orowan
stress (eq. [25i]) is a case in point, and so are all other dislocation (self)
interactions, such as forest hardening.
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Fic. 25-18. Normalized plane glide resistance 7 versus normalized obstacle

strength X for screw and edge dislocations, using orientation dependent effective

line tension and isotropic elasticity theory (v = 1/3). &5 is the free energy per

unit length of screw dislocations, /? the slip plane area per obstacle point, and f
the sine of the bow-out angle.

On the other hand, when the element glide resistance is only due to the
shear produced by the passing dislocation, which is the same for screws and
edges, the appearance of E~3/2 in the term f3/2 of eq.[25dd] dominates the
explicit E, and the dislocations with the lower line tension determine the plane
resistance: the edges. An example of this is the cutting of coherent precipitates.
Figure 25-18, which was derived from the exact relation [25w], illustrates the
change from edge control to screw control as the Orowan strength limits the
precipitate strength.

The relative values of the glide resistance to screw and to edge dislocations may,
under some circumstances, have a far-reaching influence on the slip habit. This
occurs when the applied stress necessary to drive the edge components through
their obstacles at a prescribed rate and temperature exceeds the maximum glide
resistance of the screws: then, the screws must be in continuous motion and have no
opportunity and no driving force for cross slipping. As a consequence, slip remains
planar and this fact may lead to more severe stress concentrations and to difficulties
in propagating slip throughout the volume of a specimen. On the other hand, when
the maximum glide resistance to screws is not exceeded, slip may be wavy or planar
~ depending on other factors affecting the ease of cross slip (temperature, stacking
fault energy, etc.). If wavy slip should be observed in a particular case, this estab-
lishes that the propagation of screws is not easy (Kocks, 1969).
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26. DRAGGING OBSTACLES

In secs. 24 and 25, we discussed some examples of glide resistance diagrams due
to structural features of the crystal that vary with position in some way. But there
are some effects that are not fixed in the crystal, which produce a resistance to
dislocation motion. One example is a dragging Cottrell cloud of solute atoms, from
which the dislocation may nevertheless tear loose under a high enough stress or a
high enough imposed strain rate. We have excluded effects requiring diffusion in
this article and will, therefore, not treat this case further. (See, for example, SCHOECK,
1974.)

Another example of a glide resistance that moves along with the dislocation, as it
were, is the necessity of extending a dipole trailing behind the dislocation, which
may once have been formed at a jog in a screw dislocation. This case has been of
some interest in the literature and we will discuss it briefly. :

Jogs
A jog on a screw dislocation can act as an obstacle to its motion. We are con-
cerned here with temperatures below that at which diffusion becomes important.

di_
\ 1 .
\ /\E
FiG. 26-1. Screw dislocation drawing out edges dipole at jogs.

Then, if the dislocation advances, it pulls out a dipole behind it, as shown in Fig.
26-1. If the height d of the jog is large—much larger than the size of the atom—the
energy associated with the dipole is mainly elastic. By advancing unit distance, it
creates unit length of dipole, of energy
1 b2 d

P om= [26a]

— v 2 o

Fpirore ™ i

where r, is an inner cut-off radius. This energy per unit length is the resisting force
K exerted locally on the dislocation. It is here not the strength of a fixed obstacle,
but is dragged along with the dislocation as it advances. For a constant jog spacing
1, the line glide resistance is then constant and of a value

K g bln fr,)

THNE = T T L T, [26b]

The resulting line resistance diagram is shown in Fig. 26-2. The free energy of the
body increases (initially as a*) as the dislocation bows out between jogs, driven
forward by an applied stress. At a sufficiently large bow-out, a dipole is pulled out
at the place where the dislocation was jogged. The free energy then increases
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linearly with area, so the line resistance is constant. As we have seen (sec.22),such
motion cannot be thermally activated. ‘

The energy of a dipole of atomic height is mainly core energy. It may be regarded
as a'row of associated point defects. On forming such a jog, the free energy probably
undulates with a wavelength of atomic dimensions, as shown in the figure. The
amplitude of the oscillations is difficult to estimate (it depends on the details, at an
atomic level, of the formation of the dipole) but it is likely to be small compared
with the bow-out energy. The oscillation permits a small degree of thermal activation
of dislocation motion.

The (plane) glide resistance for continued flow must here follow from a statistical
treatment of the jog spacing as it develops with glide.

Energy is stored, as the self energy of the dipoles, during jog dragging. At tempera-
tures above 0 K, this energy is slowly released by the annealing-out of the dipoles.
But at the temperatures that concern us in this review, this process is very slow.
(The first detailed discussion of jog dragging was given by SEEGER, 1955b.)

TLlNE
8ow-outT LARGE JOG
X\
(/l ' DIPOLE FORMATION
) ATOMIC JOG

Fic. 26-2. Schematic line resistance diagram for dipole formation at jogs.

27. EXTENDED DISLOCATIONS

Dissociation in the Slip Plane

Up to now we have characterized a crystal by its glide resistance: a quantity
with the dimension of a stress which describes its resistance to the motion of a single

dislocation of strength b (a lattice translation vector). The magnitude of the glide
resistance depends on the magnitude of b, and thus on the ability of the dislocation
to dissociate.

In fcc crystals, the unit perfect dislocation may dissociate into two partials
separated by a stacking fault. In ordered fcc alloys it may dissociate into four
partials, separated by antiphase boundary, stacking fault, or both. In more com-
plicated structures (MoS; is an example), the dissociation may involve the splitting
of the dislocation into six or more partials, each separated by a fault from the next.
In all cases the faults tend to bind the partials together (opposing their elastic
interaction which tends to separate them) so that they move as a glissile group.

If the fault energy is sufficiently high, the partials move as a tightly-bound group
of width . For many practical purposes the dissociation can be ignored, and the
behavior of the group is well approximated by that of a single dislocation of strength:

b= b, [27a]

=
where the b, are the partial Burgers vectors. But when the glide resistance varies
rapidly with distance, the total force on the leading partial may be sufficiently
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different from that on the trailing partial to dissociate the two or at least change
their spacing.

Complete separation cannot occur when the glide resistance is controlled by
discrete obstacles the spacing of which is large compared to the equilibrium separa-
tion of the partials, under the given stress. The local glide resistance gradients can
then only have the effect of causing local constrictions or bulges in the extended
dislocation. The associated element free energy changes must be incorporated in
the element glide resistance of the “‘obstacle”. In fact, these changes alone form the
basis of some proposed mechanisms of precipitation hardening (GLEITER and
HORNBOGEN, 1965; HirscH and KELLY, 1965).

More extensive changes in the treatment are necessary for dislocations held up
at isolated (or dragging) linear barriers. Dissociation along the entire length of the
dislocation is here conceivable, and it is easy to derive under which circumstances
it will occur when the barrier half-width 8 (Fig. 24-3) is smaller than the equilibrium
separation of the partials . For then the difference in force on the two partials is
exactly equal to the maximum glide resistance #eLem times b, and dissociation must
occur when this force exceeds the fault free energy per unit area xraurr. In normal-
ized variables, using the shear stiffness in the glide plane, u":

TELEM , XPAULT 5 < g (dissociation). [27b]
Iz wb

For a quantitative estimate, we have listed in Table 2-III some typical values for

the stacking fault energy parameter xsr/u’'b and the equilibrium partial separation

7. As noted by SEEGER (1955a), most materials fall into two extreme classes. Most

pure elements and compounds have stacking fault energies so high that their

equilibrium partial separation is of the order of the lattice spacing and that it would

require stresses in excess of 1/100 to dissociate them. Since for linear barriers we

always have #iLmve = 7eLem, such stresses are of no practical interest, unless
#prane <€ FLive through the action of dynamic pile-ups (sec. 24).

Table 2-1I1.

Stacking fault energies xsr (compromise from a, b, ¢), normalized by the shear
modulus* p’ (Table 3-I) and the Burgers vector (Table 2-1); and equilibrium
separation 7 of partials in screw and edge dislocation (c, d)

XsF Nscrew/b Neoce/b
wb
Some elements with allotropic transformations,
many solid solutions < 103 > 10 > 50
Ag 02x10"2 7 30
Cu 0.4x10-2 5 15
Au 0.6x10-2 3 10
Most other elements and compounds > 10~2 ~1 ~1

Notes:
(a) CLAREBROUGH ef al. (1967).
(b) LUcke and MECKING (1973).
(c) COCKAYNE, et al. (1971).
(d) From values in first column, values for v from Table 2-I and fig. 122 in SEEGER
(1955a)

* SEEGER uses the inverse compliance rather than the stiffness p'.
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On the other hand, most solution hardened alloys and some elements that
exhibit allotropic transformations (such as cobalt) have rather extended dislocations,
and their partial separation may be changed significantly, up to the point of dissocia-
tion, by differences in the glide resistance experienced of 10~ ?u or less. In such
materials, the element glide resistance of an isolated linear barrier must be taken
to be that applying to a single partial. Moreover, the line glide resistance for bulge
formation (sec. 24) must be severely affected by the stacking fault extending through-
out the area of the bulge for the leading partial, and by the necessity to also form a
bulge in the trailing partial.

In cases more complicated than the narrow linear barrier discussed above (eq.
[27b)), the equilibrium partial separation can be derived, provided the functional
relationship 7(x) is known (SEEGER, 19552, fig. 122), by subtracting from the stacking
fault energy xsr the difference in total force on the two partials:

Xerr = xs¢ — [B(c — mume)lz + [B(e — TLine)]s. [27¢]

The line glide resistance incorporates the element resistance as above and any
‘“‘curvature stresses” exerted on each partial by itself (but not their interaction
stress); and the term bo in each bracket signifies the Peach-Koehler force exerted on
the respective partial by the applied stress.

Periodic linear barriers are the hardest to treat when the finite extension of the
dislocation is taken into account. Only some extreme cases can be judged with some
confidence. Firstly, long-wavelength (A > ) variations in the element resistance,
such as by internal stresses, are not expected to have an appreciable influence on the
partial separation in any material, since here the difference in force felt by the
leading and the trailing partial becomes insignificant. Secondly, when the period A
of the element glide resistance and the equilibrium spacing 3 of the partials are the
same (such as they may be for the lattice resistance in all high-stacking-fault-energy
materials) the variation of the partial separation and the concomitant variation of
the element free energy become part and parcel of the element glide resistance dia-
gram. But when one stacking fault spreads over many wavelengths of the glide
resistance, it should be important how close the spacing is to an integer multiple
of the wavelength (since then the difference in force is zero). This problem would
become very sensitive to the details of the model; one may, however, expect some
degree of smoothing of the element glide resistance. This could be one of the reasons
for the low Peierls stress in fcc metals.

Dissociation out of the Slip Plane

In some materials, crystallographic symmetry demands that any dissociation of
stationary dislocations be nonplanar. For example, in bec metals, the slip vector
is the <111 direction, and the core of the screw dislocation must, therefore, have
three-fold symmetry. Even if part of the dissociation may be in a slip plane, some
other part must be out of the slip plane.

For such a dislocation to glide without atomic shuffling in the core, it must
recombine into a full dislocation or at least into one with a planar core. Depending
on whether this recombination occurs only for forward travels of atomic distances
or is retained for longer times, this process may be described as a periodic lattice
resistance (‘“‘pseudo-Peierls stress’”) or as a linear barrier that is not localized at a

fixed position but is re-established wherever the dislocation comes to rest.

"~ In either case, the line resistance to glide may be lower than the element resis-
tance through the activation of an alternative path: in the case of a lattice resistance,
the nucleation and lateral propagation of kink pairs or bulges; in the case of a
dragged linear barrier, the nucleation of a loop in the manner discussed for isolated
attractive linear barriers.




3. KINETICS

Summary

In the last Chapter, we have derived the driving force for dislocation
motion. For an element of a continuous dislocation line, it is the difference
between the applied stress o and the line glide resistance 7y ne- We have con-
sidered equilibrium situations by letting the dislocation adjust its shape and
thus its self stresses such as to make 7y g constant along its length—and then
adjusting the applied stress to the same value. For different positions of the
dislocation in the glide plane, a different applied stress ¢ would, in general,
be required to maintain equilibrium.

For a constant applied stress o, a dislocation element experiences, in general,
a varying driving force. It responds to a finite value of (o-r1np) by accelerat-
ing until its velocity is limited by energy dissipating drag mechanisms—or,
eventually, by relativistic effects near the speed of sound. Dislocation dynamics
is concerned with the relations between forces, energies, velocities, and
accelerations. We discuss it in sec. 31, and introduce the relevant material
properties: the mass # per unitlength of a dislocation, and the drag coefficient
B.

If the driving force varies rapidly, two special dynamic effects may come
into play: the oscillatory motion superposed on the forward velocity of the
dislocation may lead to radiation losses; and the inertia of the dislocation
may help it overcome obstacles even when the stress is less than the maximum
glide resistance. We find that inertial effects have been unduly neglected in
the past. At low temperatures, and for short-range obstacles, they may well
be important.

For the more usual slow variations in driving force, in which the velocity
is drag controlled everywhere, we find it convenient to distinguish between
two regimes of stress: one in which the stress is below the mechanical threshold
and the other in which it is @bove. When o > #, the driving force is positive
everywhere and dislocations must keep moving. We call this continuous glide
and discuss it in sec. 32. Calculation of the average velocity leads one to
define an effective stress which, in contradistinction to the (local) driving
force, is not equal to the difference between applied stress and glide resistance,
but is a more complicated function of them; for a sinusoidal variation in
glide resistance, for example, it is the geometric mean of the minimum and
maximum driving force.

When the applied stress o is smaller than the mechanical threshold %,
dislocations must stop at various obstacles. They may be released by thermal
fluctuations and then travel at a drag controlled velocity to the next obstacle.
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We call this jerky glide and treat it in sec. 33. The most important problem
here is the derivation of the conditions for continued plastic flow or steady
state, and the associated possibility of transient behavior at short times.

The mechanical threshold #, which separates jerky from continuous glide,

“may be the maximum value of 7 e OF Of TpLaNE depending on whether the
behavior of individual dislocations is studied or continued slip over an entire .
plane.

The kinematic relations linking the velocities of individual dislocations (or
dislocation segments) to the macroscopic strain rate demand a knowledge of
‘the density of mobile dislocations (or mobile dislocation segments). The
kinetics of slip is thus controlled not only by the kinetics of dislocation glide,
but also by the kinetics of the number of participating elements. Again, this
will usually involve time dependent behavior leading to a steady state.

The relation between strain rate and stress, and its dependence on other
variables such as temperature (i.e. the deformation kinetics) may be described
in empirical or phenomenological form (sec. 34). If one wishes to avoid the
strain-time history as an explicit set of variables, it is imperative that one '
introduce structure variables; it will be discussed how many are necessary -
under various conditions for a meaningful “constitutive relation”.

There have been many excellent discussions of the kinetics of motion of
individual dislocations in continuous glide and jerky glide, and of the kinetics
establishing the mobile dislocation density, as well as how these kinetic rela-
tions can furnish a basis for phenomenological constitutive equations. of
these references we find the following limited selection most useful:

ALEXANDER and HAASEN (1968), Dislocation Dynamics and Plastic Flow in the Diamond
Structure;

GILMAN and JoHNSTON (1962), Dislocations in Lithium Fluoride Crystals;

KLAHN, MUKHERJEE, and Dorn (1970), Strain Rate Effects;

LeisrrIED (1955), Gittertheorie der Mechanischen und Thermischen Eigenschaften der
Kristalle;

NABARRO (1967), Theory of Crystal Dislocations;

OROWAN (1940), Problems of Plastic Gliding;

Rice (1970), On the Structure of Stress Strain Relations for Time-dependent Plastic
Deformation in Metals; )

RosenFIELD, HABN, BEMENT, and JAFFEE (Editors) (1968), Dislocation Dynamics.

31. DISLOCATION DYNAMICS
The Equation of Motion

Like the classical body of Newtonian mechanics, a dislocation or a kink
that is not in (static) equilibrium is governed by a (dynamic) equation of
motion. The force that an applied shear stress exerts on it tends to cause it to
accelerate, at a rate which is determined by its inertial mass, which we define
below. This tendency is opposed by mechanisms which dissipate energy (drag,
or damping mechanisms) and by any other internal forces opposing the motion
(the glide resistance treated in sec. 23).

The dislocation element or kink moves when the force ob applied externally
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first exceeds the glide resistance brpne due to bdth element resistance and
self-stress (eq. [23c]). The equation of motion of a unit length is

A$ 4 By = b(c — TpinE)- [31a]

The “inertial force” A and the “drag force” By balance the “driving force”
b(c — 7). The integral over y gives the energy balance:

140* + [ By dy = oby — rsron by [31b]

The kinetic energy 3.#v?, the dissipated energy | By dy, and the stored energy
Tsror Dy (Where 7grog is the average glide resistance felt by the element, eq.
[22g]) are all supplied by the external work oby.

Experiments frequently show that the velocity of .a dislocation is a non-
linear function of stress, suggesting that B in the equations above itself
depends on velocity. All the evidence for close-packed ctystals, however,
indicates that a dislocation moving through an obstacle free crystal experiences
a linear-viscous drag, and that a nonlinear relation reflects the thermally
activated motion of a dislocation through obstacles (to be discussed in
Chapter 4).

In some applications, the dislocation motion of interest is the vibration of a
“string”’ constrained by “‘pinning points” at both ends but under no glide resistance
in between. Along the fiee length, the line glide resistance is then equal to the self
stress. In the line tension approximation (eq. [23j]), this is proportional to the
curvature or, for small excursions, to the second derivative y” of y with respect to
the average line direction x. The equation of motion [31a] reads then

Ay + By +- €y = ob. [31c]

For larger excursions of dislocations in a field of discrete obstacles, one may still
wish to treat dislocation segments as a whole, rather than individual elements.
Integration of eq. [31a] over a segment between two points / apart gives then, with
eqs. [25c], [25d],

4G + Ba = obl — K(a). [31d]

Before discussing the two coefficients .#and B in the equation of motion
in some detail, let us introduce two quantities that appear in all time depen- .
dent dislocation phenomena: the speed of sound and the atomic frequency.

Speed of Sound and Atomic Frequency

The “speed of sound” in a solid may depend on many variables: the longi-
tudinal or transverse character of the waves being considered, the direction
of propagation and (in the case of shear waves) of polarization, and the
frequency. In dislocation problems, the ““speed of sound” is often meant to
refer to the “terminal velocity” of the dislocations, in which case it depends
on whether it is a screw or an edge dislocation (the definition is, in fact, more
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complicated for an edge dislocation)—or the “speed of sound” may refer
to the rate at which information travels along a dislocation line (to be
derived, for instance, from the wave equation [31c]).

We are here not concerned with dynamic problems except as limiting cases,
and will thus ignore these subtle differences. For the purposes of normaliza-
tion of various quantities, and of order-of-magnitude estimates, however, we
wish to use the “speed of sound”, and for these purposes, we shall use the
value obtained from

Us = Usounp = A/ % [Ble]

where p' is the shear constant in the slip plane and slip direction (stiffness,
not inverse compliance) and p is the mass density of the material.

In many problems, the ratio of the speed of sound to the Burgers vector
appears: an “atomic frequency”. We define

wp = WatoM = - [31f]

b

and we shall use for all order-of-magnitude estimates
wy ~ 1013 sec™ 1. [31g]

Values of v5 and w, for some materials will be listed, along with damping
data, in Table 3-I.

The atomic frequency w, introduced in eq. [31f]is 2~ times the frequency of
vibration of one atom in a crystal otherwise at rest; also, it characterizes a phonon
with wave number 1/b. Sometimes the Einstein frequency

' w
ve = —2" [31h]
is used as a typical atomic frequency, and sometimes the Debye frequency (LEB-
FRIED, 1955, p. 251): :

3\ .
vo = Ds (4”9) , [31i]

which is approximately 0.7w for both close-packed and bec lattice structures (Q =
atomic volume). We chose w, as a parameter, because vs and b are in fact the
quantities that primarily enter the equations and there is no reason for introducing
any proportionality constants.

The Mass of Dislocations and Kinks

We may formally identify .#as the (inertial) mass per unit length of the dis-
location. Tt could, in principle, be calculated by deriving the stress necessary
to provide uniform acceleration of a straight dislocation in the absence of any
damping and of any element glide resistance, in a given lattice at a given




.

J M

72 THERMODYNAMICS AND KINETICS OF SLIP

temperature. This has not been done, partly because of the difficulty of
describing the force on a moving dislocation (see NABARRO, 1967, p. 496).
Instead one may calculate the kinetic energy of a straight dislocation moving
at uniform velocity. For a screw dislocation, geometric requirements lead to
the well-known (FRANK, 1949, see also WEERTMAN, 1961) relation for the total
elastic-plus-kinetic energy, %,, of a unit length of dislocation moving at a
constant velocity v
. wu

V1 — v¥[ug?
which, when expanded as shown above for v/vs < 1, allows us to formally
identify the first term % with the energy of unit length of a screw dislocation
at rest (approximately equal to its free energy % ), and the second term
with its kinetic energy. If the latter is set equal to 4yv>, this leads to an expres-

sion for the mass.# in terms of % and the speed ot sound vg:

/4
M screw = —- [31k]

vs?

v

2
2w (1432 4.), [315]
S

v,

The relativistic energy of a moving edge dislocation cannot be described
by eq. [31j] (ESHELBY, 1949). However, a relation has been derived (WEERT-
MAN, 1961) between the effective mass of an edge dislocation and that of a
screw:

v 4
M gpoE = [1 + (-—t) ] -//’scmzw- ‘ [3181

U

These masses are very similar, since the transverse speed of sound v, is usually

" about half the longitudinal speed of sound »,. We can thus use eq. [31k] for

the mass of both kinds of dislocations, using the line energy of a screw disloca-
tion for U.

Kinks in dislocations can be treated more easily, inasmuch as they are
point-like defects traveling in one dimension only. Their self-energy per unit
length is roughly an order of magnitude lower than that of an element of a
long straight dislocation, due to the absence of a far-reaching strain field of a
kink. Thus we may set (ESHELBY, 1962):

/4

My = KINK
vs2
1 % ‘
~ — — (v <€ vg).
o< |
The line energy of a screw dislocation is approximately pb?/2; With the

atomic frequency introduced in eq. [31f], we thus have for both screw and
edge dislocations

[31n]

[31m]
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and for kinks:

Mg = 21—0 a% | [310]
The order of magnitude of .#can be obtained by substituting
U ~ % pb®
and [3le] .
vs2 = ’i,
p

into eq. [31k]. The result is
M ~ }pb*  per unit length.

The mass of a length b of dislocation is 3pb3, or roughly half the mass of one
atom.

The Drag Coefficient

At steady state under a constant driving force b(oc — ring), @ dislocation
moves with a constant velocity. Then, assuming its velocity is sufficiently
smaller than that of sound,

Bv = b(s — TLing)- [31p’]

In crystals with a Peierls potential, the drag force Bv may be due to the lattice
friction, and be nonlinear (that is, B may depend on v). But in close-packed
crystals without an appreciable lattice friction, B is determined by the inter-
action of the moving dislocation with phonons, and, at very low temperatures,
with electrons; both impose a linear-viscous drag on the moving dislocation.

More than one type of interaction is possible (see LOTHE, 1962; NABARRO,
1967; KLAHN et al., 1970; BRAILSFORD, 1972; GRANATO, 1973). First, thermal
shear-stress fluctuations can set the dislocation into fluttering vibration, radi-
ating elastic energy into the crystal (the “flutter mechanism’). Second, the
nonlinear elastic strains around a dislocation scatter phonons because of the
locally changed lattice compliance, and the changed density near the core
of the dislocation scatters both phonons and electrons (“phonon and elec-
tron scattering”). Both the flutter mechanism and the scattering mechanisms
exert a retarding force because a moving dislocation encounters more phonons
from the forward direction than from behind. Third, a moving dislocation
builds up and relaxes elastic strains at any point in the lattice. This process
is opposed by the same phonon viscosity that damps out elastic waves
(“phonon viscosity”). This process, again, applies to electrons also, and may
appear as a low-temperature electron drag.

All the phonon mechanisms lead to a drag coefficient of the same general
form,
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i |
B~ ___T_ [31q]
Qwy
so that the drag controlled steady-state velocity becomes
po =Dy [31r]

kT

The interactions become stronger as the temperature rises—although not
necessarily according to the simple linear law [31q]. This means that, at con-
stant stress, the velocity decreases as the temperature rises, so that a formally
defined “activation energy”’ would be negative:

Jdlnv

T(—1kDle [31s]

Experimental measurement of the drag coefficient is possible in principle
though difficult in practice. Three techniques have been used: direct measure-
ment, internal friction studies, and high-strain-rate tensile or compression
testing. The “direct’” measurement involves measuring the distance moved by
a dislocation during a given stress pulse; it gives a lower limit to the instan-
taneous velocity, thus an upper limit to B. Etch pit (GILMAN and JOHNSTON,
1962) or x-ray imaging techniques (TURNER et al., 1968) have been used to
locate the dislocation before and after the stress pulse. Here it is imperative
that the applied stress exceed the mechanical threshold considerably, if a
linear velocity-stress relation is to be observed (see sec. 32). On the other
hand, v < v must also hold so that

. kT
fimp €0 <L o

These conditions are fulfilled in the experiments of POPE and VREELAND (1969)
on zinc, of GORMAN et al. (1969) on aluminum, and of JassBY and VREELAND
(1970) on copper; but not in those of TURNER and VREELAND (1970) on iron
and in the LiF experiments by JouNsTON and GILMAN (1959) and by NAGATA
and VREELAND (1970).

An indirect measurement of the damping constant can be obtained by
studying the macroscopic strain-rate effects, using a tensile machine (FER-
GUSON et al., 1967). This indirect method is subject to uncertainty since the
mobile dislocation density must be known in order to derive B, anc;‘ can only
be determined by a separate experiment.

Internal friction measurements give information from which the mobile
dislocation density and the drag coefficient can be derived. Studies must be
made at such low strain amplitudes that the dislocations do not have to over-
come discrete obstacles, but simply vibrate, like damped elastic strings,
between points where they are pinned (ALERs and THOMPSON, 1961 ; MASON
and ROSENBERG, 1967; FANTI et al., 1969). FANTI et al. (1969) measured the
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dislocation density and (assuming that all dislocations are mobile) combined
this information with the frequency of the internal friction peak to give a
reliable value for the damping constant. .

The three techniques, when they have been properly applied, show broad
agreement. The data have been reviewed recently by KLAHN ef al. (1970).
Their compilation shows that, over the temperature range from 4.2 K to 300
K, B lies between 10~* and 10-3 dyn sec/cm? [that is, between 10-5and 107*
N s/m?] for most metals and ionic crystals. In general, B increases with tem-
perature, though certain experiments suggest that it becomes independent of
temperature close to 0 K.

In Table 3-I, we have listed some room temperature data we consider
reliable. (For more data see KLAHN ef al., 1970.) It may be seen that eq. [31q]
represents these data to within a factor of 2. We will see below (Fig. 31-1) that
this is true even for some other temperatures.

Due to many uncertainties, the detailed theories of the phonon and electron drags
are themselves no more than order-of-magnitude estimates. Although all of them
give a linear temperature dependence in the high temperature approximation,
different treatments differ in their predictions for low temperatures. It has sometimes
been suggested (GRANATO, 1968) that some of these theories should be related by
being different ways of looking at the same physical mechanism. This is important,
because additivity of drag requires independence of the different mechanisms of
energy dissipation. Below we summarize what we believe to be the physical bases
for the most important treatments, both with reference to dislocations and to kinks,
and then proceed to compare these with the scant experimental evidence available.

Thermal waves produce local fluctuations in shear stress (LEIBFRIED, 1950). This
stress, producing a force on the dislocation element like any other stress, has an
amplitude for which an estimate can be obtained from the energy balance in an

atomic volume:
1 1

Z‘L FrHERM = 10 Erperm (31t]
where Eruerm is the thermal energy density and the factor 1/10is a close approxima-
tion to an exact orientation factor derived by Leibfried, and to which longitudinal
waves contribute only negligibly (Prnesm is large: typically /30 at 100 K). A free
dislocation element oscillates in response to these stresses and to the self stress
arising from its connection to other parts of the dislocation. A kink in a dislocation
responds directly to the stress given by eq. [31t] (ESHELBY, 1962; LOTHE, 1962).

This flutter of the dislocation leads to a reradiation of energy proportional to the
incident energy [31t], which may be formally described by a scattering radius Rrrur
(scattering cross section per unit length of the dislocation). The dislocation element
moving with a drift velocity v feels a net force proportional to (v/vs), in the manner
of a radiation pressure, giving rise to a drag coeflicient

1 Evnerm RrLut
M i
10 watom b [3 U]

Berur

Clearly, the entire physical mechanism is hidden in the scattering radius RevuTs
which was set equal to b by LEIBFRIED (1950) as a “‘first estimate”, while ESHELBY
(1962) derived a complicated formula for kinks with widths of a few b, again giving
Rriur ~ b. In most references to Leibfried, the factor Recur/b is simply omitted.
We prefer to treat it as an adjustable parameter with the proviso that nothing in
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the mechanism should let Rrrur depend on temperature or velocity in any sensitive
way, for vfv, <€ 1.

While the flutter mechanism discussed above relies on the force exerted by any
stress field on an elastic incompatibility, there is also an interaction between two
elastic fields that is due to nonlinear elasticity: when two stress fields superpose
nonlinearly, there is an interaction energy that is temporarily stored during the time
of the superposition and is then released again to the thermal reservoir. This mech-
anism is therefore intimately linked to some transport property. For this reason,
and for the reason that nonlinear dislocation effects are hard to treat, no detailed
theory seems to be available. .

Formally, one may again describe it by a scattering radius, Rnonv. Since all com-
ponents of the ‘‘thermal stresses” are subject to this scattering mechanism, the
orientation factor 1/10 in eq. [31u] would be missing:

BNONL ~ ETHERM RNONL. [31\’]
WATOM b
NaBARRO (1951) provided an estimate that shows the effect to be negligible. SEEGER
and ENGELKE (1968, p. 623) claim that it is important for wide kinks, and obtain an
expression of the same order as [31u]. (They show it to be large compared to the
flutter contribution from longitudinal waves, which, however, is itself negligible.)
Finally, phonons can interact with the strain field of a dislocation in the same
way they interact with each other, whether the strain field is linear-elastic or not.
The effect is due to the dependence of the phonon spectrum on volume and other
strains (MasoN, 1960) and involves transfer of energy between different volume
elements (““thermo-€lastic effect™) or between different modes of the phonon spec-
trum (‘‘phonon viscosity”’, MASON, 1960, 1968) as the strain in each volume changes
when a dislocation moves. This effect too depends on a transport property: in the
case of the thermo-elastic effect on the total thermal resistance (appreciable only in
insulators); in the case of the phonon viscosity effect on the mean free path 4,, for
phonon-phonon interactions. For the latter effect, MAsoN (1968) derives a formula
(his egs. 4 and 12) which reads, in slightly rephrased terminology,

1 Erucxm by

15 watom rpz

> [31w]

Briason

where the proportionality factor depends on the relative magnitude of the nonlinear
elastic constants and r, is an inner cut-off radius appropriate to this macroscopic
theory, which turns out to be its most important parameter. While MASON sets it
to be slightly less than b, other authors (e.g. LoTHE, 1962) have argued that it should
be equal to the phonon mean free path so that (his egs. 10-15)

1ETHERM i

+ BCOREo [31)(]

BLOTHE 2 WaTOM App
Since 4,, is generally larger than about 105, the selection of the cut-off parameter
can change the predicted value of the drag coefficient by a large amount—even
though we have inserted, in eq. [31x], an upper estimate of the proportionality con-
stant derived by LOTHE in a different way and have added a core relaxation contri-
bution given by LotHe (his eqgs. 36, 37). Since 4,, rises substantially as the tempera-
ture is lowered, the predicted temperature dependence would also be noticeably
different. At the present time, we regard the question as unsettled. For kinks there
should be little phonon viscosity drag on account of the absence of a far-reaching
strain field.
In all these theories the drag coefficient is proportional to the thermal energy
density Equerwm, the temperature dependence of which is given by the Debye theory.
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(BRAILSFORD, 1972, derived a somewhat less sensitive function of temperature.)
The only disagreement in the literature is about the zero-point energy §kToesye
(Toeeve = Debye temperature), whether it should be included (LEIBFRIED, 1950) or
not (LoTHE, 1960; EsHELBY, 1962). If it is not, we have, with the atomic specific
heat cv,

1
Ernerm = af(—'v dT [31y]
B kT
K):“’A
2.0
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FIG. 31-1. Observed drag coefficient B, divided by the order-of-magnitude estimate

(eq. [31q)), as a function of temperature. The points should follow the solid line if

B were proportlonal to the thermal energy density Eruerm (eqs. [31t] through
[31y]). References as in Table 3-I.

which tends to k(3T — Tpesvs)/Q for high temperatures; a good approximation for
all temperatures above half the Debye temperature is 2k7/, instead of 3kT/Q as is
often used. At lower temperatures, the value of Eryerm/kT decreases in the manner
shown in Fig. 31-1. It is seen that the experimental temperature dependence agrees
at Jeast as well with the order-of-magnitude formula (31q) than with one in which
the kT-term is replaced by E;uerm. A similar conclusion was reached by ALERs and
THOMPSON, 1961. (See, however, recent experiments by HIKATA ef al., 1970, on
Al, and 1972 on NaCl.)

We now turn to the motion of a dislocation through a crystal with an appreciable
Peierls potential. If the driving force is less than the Peierls stress (bs, per unit
length), then the dislocation can only move by the thermally activated penetration
of the Peierls hills. We discuss this in Chapter 5: the dislocation moves as if acted
on by a drag which is (usually) strongly nonlinear. Here we are concerned with driv-
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ing forces which exceed b#s, when the dislocation velocity is limited by some other
energy-dissipating process.

One such mechanism was proposed by ORowaN (1940) and has been re-examined
by HART (1955a). Suppose the dislocation energy fluctuates through an amplitude
a%, with a wavelength b, as it moves through the lattice. Then an oscillatory motion
is superimposed on the steady motion of the dislocation resulting in the radiation
of elastic energy into the crystal which must be supplied by the external stress
(NABARRO, 1967, p. 510). The resulting drag, Bosc, at first increases with v, then
reaches a maximum resembling a damped resonance peak at which a maximum
occurs in the radiated energy, and finally, at high velocities, decreases again
towards zero.

If the Peierls barrier has any significant height, the velocity of a dislocation under
a driving force which exceeds 7 b is large; so large, in fact, that Bosc is rarely, if
ever, important. The steady part of the dislocation motion is then limited either by
the linear drags discussed earlier, or by relativistic effects as the dislocation
approaches the speed of sound.

As the dislocation approaches the velocity of sound, larger drags operate
on it. This is in part because the mechanisms described above are linear at
low velocity only (v < 0.5v5); as the speed of sound is approached the mech-
anisms become nonlinear, exerting an increasingly large drag on the moving
dislocation. Tt is in part because the relativistic contraction of the dislocation
causes its elastic energy to increase rapidly when v > 0.5v5; and most drag
mechanisms are linked to the dislocation energy. Finally, new mechanisms
for radiating energy not significant at low velocities come into play. The net
result is that, above 1vs, the dislocation dissipates energy at a steeply increas-
ing rate. ‘

In a linear-elastic continuum, the velocity of a dislocation would be limited
to a maximum value of vg since its energy would then become infinite. The
discrete atoms of a crystal actually set a limit to the relativistic contraction of
the stress field, and allow, at least in principle, dislocations to achieve super-
sonic velocities. Such high speeds are rare. In subsequent sections, we shall
assume that an upper limiting velocity, equal to vg is imposed on the disloca-
tion motion. The stress is then limited to values

o oum _ Bos kT | [312]
Iz I pb  pQ
Table 3-I includes this limit for some materials. For others, it may be estimated
by the last expression in [31z], given by [31q].

Inertial Effects

We have now considered the mass.# of a dislocation in connection with the
kinetic energy it carries while moving at constant velocity; and we have con-
sidered the drag coefficient B in connection with the dissipation of energy
while a dislocation moves at its steady-state velocity under an essentially
constant driving force. Nonuniform motion has entered only through the
rapid oscillations that may be superposed on tne “essentially constant”

P.M.5.—D
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velocity due to thermal fluctuations or periodic variations in glide resistance.

A dynamic interaction between mass forces and drag forces comes into
play when the driving force varies abruptly: for example, when the applied
stress is suddenly dropped, or when the dislocation suddenly experiences an
increased glide resistance by, say, running into an isolated barrier. In prin-
ciple, the kinetic energy must then be dissipated before the dislocation comes
to rest. Under certain circumstances, a dislocation may be able to overcome
an obstacle by inertia: when the mass is large, the drag coefficient small, and
the change in net driving force abrupt.

Such inertial effects have, in the past, been largely neglected: dislocations
have been considered to be overdamped, i.e. moving at their drag-limited
velocity, at all times. There are two reasons for this. First, the time constant

of the equation of motion [31a],
facc EZ%’ : [31aa]

is very short. Inserting the value [31n] for the mass,we find that, in units of
lattice vibrations, it is just half the value given ipTable 3-I for p/oy 1

[31bb]

or of the order of 100 at room temperature. This means that any oscillatory
motion of the dislocation with a frequency of less than about 10! Hz is over-
damped at room temperature. Reliable measurements at frequencies as high
as this have not yet been achieved. Thus, internal friction studies always show
dislocations to be overdamped. The time f,.c also measures the time the dis-
location takes to accelerate to a new steady velocity when the force acting
on it is suddenly changed—and for most practical purposes 7,¢c is so short
that the new steady velocity can be considered to be reached instantaneously.

A second reason for ignoring inertial effects in the past has been the practice
of considering long dislocations impeded only by an average plane glide
resistance. Yet the glide resistance, even when it is averaged along the dis-
location line, varies substantially with distance traveled: from positive to
negative when little energy is stored. Moreover, the glide resistance sampled
by individual elements of the dislocation varies much more widely ( Fig. 25-10)
if the dislocation has not reached equilibrium shape. Thus, dislocation
elements in real materials experience rapidly changing driving forces, and the
possibility of inertial effects must be considered.

When one deals with the small dimensions and short times for which
inertial effects may be important, the macroscopic concept of a drag co-
efficient may no longer be valid. For a rough estimation,* we shall neverthe-

* GrANATO (1971) independently developed a treatment of inertial effects similar to the
one developed here but based on the string model. He emphasizes the fact that B becomes
small at temperatures near absolute zero, and that it is here that inertial effects will be most

important. He has applied his model to the observed increased plasticity in the super-
conducting state, with considerable success.
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less use the equation of motion [31a] with the values for material properties
and B as given above. For this purpose, we rewrite eq. [31a) in the following
dimensionless form: ‘

_ 2
Edv_—_a det_f_ﬂ [31cc)
3 : M M
with
_dy
dt

(All 7’s are line glide resistances in this section, and we have referred all
stresses to their maximum, #. For some general applications, one may instead
wish to normalize with the shear modulus p.)

T
or———— T
(a)
6] 0 y
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Vo
(b)
(0] 5 A t
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Vo .
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o }
0 y

ySTOP

FiG. 31-2. Velocity v of a dislocation for which the line glide resistance = abruptly
rises from zero to the level of the applied stress o,

An important characteristic of the behavior expressed by eq. [31cc] is the
“stopping distance’. It can be easily derived by considering the case where a
kink or other dislocation element, which has an initial velocity v,, suddenly
finds itself under zero driving force (Fig. 31-2); then the term with the time
differential vanishes. By setting dy = v d¢, one can immediately see the
exponential decay (Fig. 31-2b) of the velocity with time; the relation between
the distance y and the velocity is seen to be linear. The velocity becomes zero
when the distance traveled is

/4
Ystop = Vo —. [31dd]
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(This also holds as a first approximation when the driving force is negative,
where the distance ysrop in eq. [31dd] now defines the point at which the
dislocation reverses direction.) Since we have seen that .#/B is generally less
than 100b/vs at Toom temperature (eq. [31aa], Table 3-I), the dislocation
comes to rest in a distance smaller than b if its initial velocity v, < vg/100.

If v, was the steady-state velocity under an applied stress o in an obstacle-
free region, eq. [31dd] becomes, with egs. [31n] and [31q],

Ystor _ op# _ ol (ib_) ~ 01 (&9) [3lee]
b p B*  u2\By, p2\kT

To provide an order-of-magnitude estimate, we list below the stopping dis-
tances and velocities of dislocations that moved under ¢ ~ 10~%x (both
quantities are linear in stress), for ub/Bvg ~ 140 as an average at room temp-
erature from Table 3-1.

Table 3-11
TIK] ! 30 100 300
vfvs 1/7 1/20 1/70
Ystop/b 100 10 1

The kinetic energy of the dislocation helps to overcome an obstacle when
a characteristic width, y,, of the obstacle becomes smaller than this stopping
distance, i.e. when

i [31ff]

Yo . M1 (49)2
b B> 2 )

This is reminiscent of the condition for subcritical damping of a harmonic
oscillator, i.e. a linearized obstacle:

' M
4 <4 _.
ath B2

[31gg]

To determine the effects to be expected for some idealized obstacles, numerical
solutions for eq. [31cc] have been obtained (Kocks, unpublished work). Figure 31-3
shows the results for sinusoidal isolated linear barriers, 10 wavelengths A apart.
When the parameter (eq. [31ff]), yo/¥stop = BM(4.#b7), with y, = A/4, assumes
values of the order 1 or below, the obstacles are in fact overcome dynamically at
stresses substantially below 7. It is also seen that, once they are so overcome, the
average velocity of the dislocations is essentially the drag-controlled one. One can
thus speak of a dynamic theshold.

A number of other glide resistance diagrams have also been investigated, among
them an isolated inverse square, and a continuous sinusoidal variation. For the
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Fic. 31-3. Computer results for the dynamic behavior of a dislocation (or kink)
under the influence of a constant applied stress o and a variable line glide resistance
T as shown.

latter, it was assumed that the average velocity over each period was constant; the
dislocation would have had to be brought to this velocity by a higher initial stress
or by a preceding obstacle-free area. In both of these cases, the dynamic threshold
varied with the parameter in the same manner as in Fig. 31-3.

A slightly different behavior is shown by attractive obstacles, where the driving
force first increases, then decreases. Here, the dislocation element can first accumu-
late additional kinetic energy, which then helps it overcome the repulsive part at
even lower stresses.

The results are combined in Fig. 31-4 which shows the dynamic threshold mpyn
as a fraction of the static threshold, #, e, plotted against the normalized range of
the obstacle. At stresses just below this line, a dislocation would have some kinetic
energy left when it first arrives at a position of zero driving force; subsequent
thermal activation may therefore be somewhat affected though we expect the effect
to be small.

These relations were derived under the assumption that the dislocation will follow
the same path under dynamic and static conditions. We do not expect this to be
true for bowing dislocations, but consider it to be probably correct for kinks.

It remains for us to assess some practical conditions under which these
dynamic effects could occur—again providing the macroscopic parameters
remain appropriate. The structure independent material property that deter-
mines the critical dimensions may be expressed as

B _ Bv, kT

Vot pb pQ

These quantities can be calculated for the cases where B is known experi-
mentally, and may be estimated by the above relation for others. Table 3-1

[31hh]
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FiG. 31-4. Dynamic threshold rpyn, Over static threshold 7y ne, as a function of the
drag coeflicient B and the mass # of the dislocation per unit length, and of the
stiffness #/A of the obstacle.

listed the inverse of this parameter for some materials at room temperature;
it is the same as 2¢,¢cw, (eq. [31bb]) or as p/ay 1 (eq. [312]).

The values in the table refer to dislocations. For sharp kinks, we expect
the mass to be substantially smaller (eq. [310]) and the damping to be some-
what smaller (since the phonon viscosity mechanism does not contribute).
The ratio [31hh] may thus be unaffected in first order.

For obstacles of a width of no more than a few b, we should thus expect
inertia effects when (eq. [31ee])

7 kT\? ..
Tune 5 (—) . [31ii]
Iz pQ/ g-
Even at room temperature, such a maximum glide resistance may be

achieved with a number of atomic-size obstacles. At low temperatures, it is
hard to see how dynamic effects can be avoided.

Some ways in which inertial effects might be observed are: a lowering of
the observed flow stress with decreasing temperature according to Fig. 31-4;
a dependence of the flow 'stress on the superconducting or normal state
through the corresponding change in the drag coefficient (see also GRANATO,
1971); the possibility of a very mild solution softening for solutes that attract
kinks; and the absence of normal annihilation between kinks of opposite
sign under a certain applied stress.

All these effects rely on the short range of the barrier. For example, two
dislocations of opposite sign, which have a much longer range of interaction
than two kinks, annihilate each other even at very high stresses.
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The most important case of any effectively long-range interaction is that
of strong discrete obstacles; namely those whose cutting is accompanied by
significant dislocation bow-outs. Although the work of FROST and AsHBY
(1971) suggests that the bowing may in fact not proceed to its equilibrium
extent, the considerable compliance associated with any bowing (eqs. [31d]
and [25t]) makes the effective y, in eq. [31f] always larger than the stopping
distance.

When the discrete obstacles are weak and closely spaced, the degree of
bow-out is small; so small in fact that we doubt the applicability of the bowing
concept to this situation. Whether the bowing mechanism is used or the
motion of kinks, weak obstacles may well be overcome inertially at high
stresses or low temperatures.

32. Kinetics oF CONTINUOUS GLIDE

Long-range dislocation motion can be classified in one of two categories:
continuous glide or jerky glide. In the former, the applied stress is above the
* (static or dynamic) mechanical threshold everywhere and, while dislocations
may move with varying speed, they must always move. In jerky glide, which
will be considered in sec. 33, the applied stress is below the mechanical thres-
hold in at least some places, so that dislocations are occasionally stopped;
they may be released by thermal fluctuations (Chapter 4). In the following,
we treat continuous glide of a single dislocation at a varying, drag-controlled
velocity, and then proceed to consider the superposition of the movement of
many dislocations in continuous glide.

Drag over a Varying Glide Resistance

In the preceding section we have, in the main, discussed dislocations and
kinks under constant driving force. Only rapid or short-range variations in
glide resistance were considered, with respect to their influence on accelera-
tion losses and on inertial penetration. We now turn to the very common case
of slow or long-range variations in glide resistance, such as it would occur in
the presence of internal stresses.
The velocity may then be assumed to attain its drag controlled limit [31p] , N
" everywhere—provided it does not get too close to the velocity of sound. This | );" }‘ JI) .'x

condition imposes an upper limit to the stresses to be admitted (eq. [31z]);a  _* ) : ;
lower limit is the maximum line glide resistance. Thus, for continuous glide: la o 77 k.
kT 3ty 73

fune < 0 < o [32a]

For simplicity, we will first consider a one-dimensional variation in glide
resistance: either due to linear barriers to the motion of dislocations, or due
to any kind of obstacle to the motion of kinks. The glide resistance may then
be described by T = 7, ;ng = TeLem. The average velocity is obtained by
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dividing the periodicity distance A by the integrated time spent at all positions:
A

A
f dy
v
W]

A

[32b]

7=

or

1 Bdy

A : blo — 7(»)]
For a sample calculation with some generality, we take a sinusoidal varia-

tion of the line glide resistance (ARSENAULT and L1, 1967; ARGON, 1968;
KLAHN ef al., 1970), but with a non-zero mean value:

- [32¢]

1
)

= Tsr0r + 7 sin 2_’;3’ o [32d]

The source of this glide resistance is usually assumed to be an internal stress.
As an example, a square array of dislocations of strength b leads to a fluctuat-
ing internal stress which can be approximated by eq. [32d] with

tstor = 0; 7= PNt #—f : [32¢]
and eq. [32d] can be thought of as the principal Fourier component of the real
internal stress. (If, instead, groups of » dislocations of the same Burgers vector
are arrayed on a square lattice, 7 is greater by the factor n, but the disloca-
tions can move in cooperative groups and the effective amplitude is the same
as eq. [32¢], see eq. [241].)
Insertion of [32d] into [32¢] then gives an elementary integral with the
solution

b= g Y C—— [32f]

This relation is plotted in Fig. 32-1. It gives zero velocity for

b(o — 7s10R)
B
for high stresses. Note, however, that the deviation from a straight line
through the origin is still substantial at o = 27,
One may now wish to define an *‘effective stress™ oy, Or an “average
driving force™ bog, by

o< #=1gr0r + 7 and approaches o =

boy = B [32¢]

which (from [32f]) is the geometric mean of the local driving forces:

Oerf = \/(‘7 — TMax) (0 — T™MIN)- [32h]
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1
Tstor %ﬂsvon*:E

Fic. 32-1. Average velocity & or equivalently effective stress o.¢, as a function of
an applied stress o larger than the maximum + of the variable line glide resistance.
Only a constant T = 7sror gives a linear relation.

Finally, one may write for the case of internal stresses (which must average -
to zero, as in equation [32e])

o? = ‘T'IZNT + Ufrr- [32i]

In other words, the square of the internal stress and the square of the effective
drag resistance add to give the square of the applied stress.

While the term “‘effective stress’ is often used in a context that implies the same
definition we have used here (eq. [32g]), it is nevertheless usually assumed to be
linearly additive to the internal stress. This does hold trivially on a local basis, but
not on an average. The ““local effective stress” (times b) is what we have here called
“driving force”. Note again that, in this context, ‘‘internal stresses” are in no way
different from any other glide resistances we have considered (e.g. incoherent in-
clusions). We shall encounter one more definition of an *‘effective stress”: this is
merely the component of the flow stress provided by one of two threshold mecha-
nisms (usually when the other is athermal). We shall use the term only in the sense of
eq. [32g].

Figure 32-1 also shows the results for a glide resistance profile consisting of a
series of single periods of a sine curve of wavelength Ay, spaced A, apart, with only
the uniform energy-storing rsror in between. Again, one merely has to add the
times spent over the distance A,, with the result

- b&t/B

v= 32j
lx Tett Az — A [ J]
Az O — TSTOR Az

where ., refers only to the sine part (eq. [32h]). This kind of behavior may be
relevant, for example, to the motion of kinks along a dislocation with solute atoms
on it. The velocity closely approaches the drag limited value immediately above 4.
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Discrete obstacles present a more complicated problem. At the lowest level
of approximation, the obstacles introduce a mechanical threshold #;ng. One
could regard this as the peak value of an oscillating internal stress, when
(according to the reasoning above) the dislocation velocity would be given by

Tefr b

B

D=

[32K]

with
Oure = Vo2 — 2 [32£]

leading to a velocity-stress diagram of the same form as that of Fig. 32-1.
More detailed treatments of the way in which a dislocation bows between and
by-passes, or cuts, the discrete obstacles shows that this is a reasonable
qualitative description (FROST and AsHBY, 1971; KLAHN et al., 1970). A dia-
gram, calculated by considering the rate of bowing of the dislocation between
the obstacles, will be shown later (Fig. 34-3).

Kinematic Equations

A kinematic equation relates the microscopic motion of dislocations to the
macroscopic strain. In what follows, we limit ourselves to motion on one slip
system only; slip on several systems presents no new problems and can be
handled along the lines described in sec. 22 (cf. Kocks, 1970a).

In the simplest case the element glide resistance is zero everywhere (no
obstacles are present). All dislocations remain straight and move at a velocity
determined only by a drag coefficient and the applied stress; and every part
of every dislocation moves with the same velocity. If the total length of dis-
location per unit volume is p,, the area da swept out during an increment of
strain dy is Vpndy so that (eq. [22c]):

dy = bp, dy [32m]
or
Y = bpm 0. [32n]

In the case of linear barriers to kink or dislocation motion, the velocity of
each element varies with time; eq. [32b] gave a prescription for obtaining the
average velocity & over a period of the glide resistance diagram. With it, we
may write

Y = bpmd. [320]
“When many dislocations are moving in the crystal, they sample different
regions of the glide resistance diagram in the same way an individual dis-
location does in the course of time. The instantaneous strain rate, which

follows directly from the basic kinematic relation [22c],
[N

b
Y——I—/J. vdé [32p]

0
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is thus, in this case, the same as the long-term average. We may use eq. [320]
for continuous glide in general, with the spatial average velocity defined by

PV

b= .l_f v de. 324]
Pm¥

0

Equations [32p] and [32q] are usable even when the glide resistance diagram
varies in both dimensions in the slip plane. The velocity will then not be the
same for different elements of the same dislocation, just as before it was not
the same for different dislocations. The integral over d¢ runs over all elements
of all dislocations. The time average is here not easily obtained in detail,
primarily because the dislocations do change length on a local basis. The
integrals in eqs. [32p] and [32q] assume that the total dislocation length is very
large: there will then always be regions in which the dislocation length
decreases and others in which it increases, so as to keep p, ¥ constant. For
the instantaneous strain rate, to reiterate, eq. [32p] is completely general and,
for example, not restricted to large dislocation lengths.

When dislocation motion must be considered as motion of kinks along the
dislocation line, the velocity of the dislocation is given by

v = Ugink A/ XkiNk [32r]

where vk is the kink velocity along the dislocation, A the height of the kink,
and xgnk the instantaneous average spacing of running kinks along the dis-
location. The strain rate becomes

y=D0"pm - Tging- [32s]

XKINK

The center term may be regarded as the total length of kinks per unit volume.

The Mobile Dislocation Density

The macroscopic strain rate is, according to eq. [320], proportional to the
mobile dislocation density p,. This quantity has been the subject of much
discussion. The main questions are: what relation does p,, bear to the rotal
dislocation density such as might be measured in electron micrographs or etch

aVe e o atio DCa

pit studies; can p,, change instantaneously with a change in external variables
such as the stress; and, can either this instantaneous or a steady-state value of
pm depend sensitively on the stress?

In a material with zero glide resistance, in which flow is controlled only by
drag, all dislocations should be mobile. For the present treatment of con-
tinuous glide, we have not demanded that the glide resistance be zero, only
that it be smaller than the applied stress everywhere (eq. [32a]). One may,
however, be willing to admit the presence of some dislocations for which the
olide resistance exceeds the applied stress; for example, dislocations in dipoles
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by some impurity; or Lomer—Cottrell locks. Such dislocations would be seen
in electron micrographs and might contribute to the glide resistance, but they
would not contribute to strain.

When such immobile dislocations are present, it is conceivable that some
of them might become mobile by the sole action of an increase in stress; then,
the mobile dislocation density could increase instantaneously. We consider
such mechanical release a part of jerky, rather than continuous, glide and
shall treat it in the next section.

Even at constant stress, however, there must be some generation of mobile
dislocations. This is because mobile dislocations tend to disappear as a con-
sequence of their very mobility: they may exit through the surface or annihilate
each other on the way, or be trapped to form dipoles. It can easily be estimated

that the strain achieved before a reasonable initial mobile density has been .

decimated is very small. Continued flow thus depends on a mechanism to
generate new mobile dislocations at sources or to multiply dislocations as
they move. v

The kinetics of the development of a mobile dislocation density p,, are
then described by a differential equation stating that the net increase in py,
per unit time equals the rate of generation minus the rate of trapping. Let the
rate of trapping be described by a mean free path yn, and the rate of genera-
tion, for a simple example, by the sufficient decrease of the back stress on
(linear) sources of density psource after previously emitted dislocations have
traveled a distance ypack; then the kinetic balance reads

dpm _ b
—— = PSOURCE — Pm

v
dt VBack Ym

[32t]

This equation may have a steady-state solution, i.e. such that the left-hand
side vanishes; when any initial mobile dislocation density does not happen to
have the appropriate steady-state value, eq. [32t] describes the development of
pm With time.

The physical content of eq. [32t] depends on the mechanisms that prescribe
psources Yeack, and ym; they may depend on the applied stress o, on pn, and, of
course, on various structure constants. For example,

psource = const [32u}
would be true for fixed sources, but

PSOURCE € Pm [32u’]
would describe a multiplication mechanism of the rhobile dislocations;

1 o — 7
~ 2 TPLANE
YBack ub

[32v]

would mean that the source feels the back stress from the last dislocation which it
previously emitted ; whereas
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LYo B2v]

would only demand that the back stress must decrease below the level of the random
stresses at the source due to other mobile dislocations.
The mean free path y., may be given by a structure constant, such as the distance
_ to the free surface, as suggested above. However, one must consider the interaction
between mobile dislocations on different slip planes. The average spacing d to the
next slip plane on which another mobile dislocation moves in the opposite direction,
while one mobile dislocation traverses its free path yn is given by
_ ! [32w]
T yd
But the stress necessary for these dislocations to pass each other (OROWAN, 1941)
is of order
- wh1
TINT = dnd
and must be added to the glide resistance (i.e. to its maximum value 7y ane, if the

wavelength with which = varies is small compared to d, see sec. 53), and the sum
must, by the premise of continuous glide, be smaller than the applied stress: _

[32x]

o — fprane — fint = 0. [32y]

This puts an upper limit on the mean free path y., which corresponds to dipole
trapping (eqs. [32w], [32x], and [32y]):

o= < 2L T rrane
Pmb u

2pmd
Inserting this upper limit into the kinetic equation [32t], along with the assump-

tions [32u] and [32v] for psource and yaack, respectively, gives a steady-state mobile
dislocation density

[32z]

Pm X 2m \/Psounca‘m [32aa]
ub
or, with the alternative assumptions [32u’] and [32v'],
Y 2 .
Pm OC (Z———TPL—ANE) . [32aa’]
wb

The foregoing examples illustrate that the mobile dislocation density can
have a steady-state value that depends on a small power of the excess stress
{over the maximum glide resistance). Such a relation is very similar to that
between velocity and stress in the continuous-glide regime (Fig. 32-1). The
product of mobile density and velocity, i.e. the strain rate, can thus not even
give any approximate information on either one of the factors. However, we
have seen that a decrease in stress in a time interval short compared to y,,/v
cannot change p,,, while it can certainly change v. We shall return to questions
relating to measurable parameters in Chapter 6.

Certain combinations of mechanisms cannot lead to a steady state of the mobile
dislocation density for finite pm (e.g. eqs. [32u], [32v] and constant y.), but it is
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unlikely that they play any role. Finally, the steady state may not be reached in
practical cases; an example is treated in the following.

The mobile dislocations may directly contribute to a glide resistance through their
mutual interaction: even when they do not trap each other, the mobile dislocations
of opposite sign, which move in opposite directions, exert varying internal stresses
on each other. HAASEN (1962) assumed that, in a first approximation, the internal
stress experienced by one dislocation varies sinusoidally with distance traveled, with
an amplitude equal to the mean passing stress:

TINT gé pml/? sin 2mypa /2. [32bb]
¥ 4

If the dislocation maintains the drag controlled velocity appropriate to the driving
force ¢ — min7 at all points, and there is no other glide resistance, the average

velocity is (eq. [32fD:
—_— ,
i=2 A/ ot — (12‘7’:) om [32cc]

. —
b . A/1 _ (2%) b, [32dd]

In steady state, where p,, is determined by the kinetic balance (e.g. egs. [32aa] or
[32aa’]), the strain rate comes out proportional to the second or third power of the
stress. However, the elastic interaction between the mobile dislocations described
by egs. [32bb] to [32dd] holds for any mobile dislocation density, whether it is in
steady state or not. ALEXANDER and HAASEN (1968) treated, in some detail and in
remarkable agreement with experiments on germanium and silicon, the behavior of
a material in which the mobile density rises from very low values. For example, the

and thus the strain rate

Y
o = const.
(a)
7 assumed
| _steady state
i -
; P
T m
2(r7 L\
3(27 ,u.b)
Y

(b)

FiG. 32-2. (a) Dependence of strain rate y on mobile dislocation density p,, at
constant stress o, as influenced by mutual interaction; (b) resulting sigmoidal
creep curve.
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development of the strain rate as a function of this rising density in a creep test
would be described by eq. [32dd] at ¢ = constant, which is shown in Fig. 32-2. The
strain rate first rises with p,, in the expected manner, but then drops again when the
glide resistance due to the mobile dislocation interaction comes close to the fixed
applied stress. If the steady-state density is larger than the value at the maximum,
or irrelevant because of a lack of sinks (as assumed by ALEXANDER and HAASEN),
one obtains a sigmoidal creep curve. The mobile density at the maximum creep rate
is easily calculated from eq. [32dd] and is proportional to the square of the stress:

2 [2mo\ 2
o= (”_b) . [32e¢]

In a complete theory of the dependence of strain rate on stress, through both the
velocity and the mobile dislocation density, the effects of an elastic interaction
between the moving dislocations and those of their mutual trapping would be parts
of the same mechanism. The proposal by ARGON (1970) is a step in this direction.

33. JErRKY GLIDE

“Jerky glide” refers to dislocation motion at stresses below the mechanical
threshold. Between obstacles, the dislocations are assumed, at the lowest level
of approximation, to move in zero elapsed time—at the next higher level, with
a drag-controlled velocity. At obstacles, they may be released either by ther-
mal fluctuations or by a change in the applied stress or in the obstacle
structure. The “mobile” dislocations then fall into two classes: those actually
“running”, and those “waiting” to be released at obstacles. Three levels of
steady state are established: that between the waiting and the running dis- .
locations; that in the slip plane, assuring continued plastic flow (introduced
with the definition of the plane glide resistance); and, in the case of thermally
instable structures, that between work hardening and recovery. Below, we
shall give a general rate equation, which describes the kinetics of jerky glide
when the first two levels of steady state have been achieved.

Thermal and Mechanical Release
The basis for distinguishing “‘jerky” from “continuous” glide is that, on a
local basis, there may be long periods of zero glide rate, interspersed with
short periods of a finite glide rate (Fig. 33-1). On a time scale long compared

4

running
waiting

_[_\/,“

Fic. 33-1. Strain due to one dislocation in jerky glide.
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with these “short periods”, glide occurs in finite increments 8y, at intervals
determined by the rate of release at the obstacles. If P describes the fraction
of obstacles that would, under given conditions, not hold a dislocation back,
SP is the fraction released under a given change of these conditions. Then,
from the kinematic relation [22c],

8y. = b Nwarr ruN P [33a]

where Ny is the number of waiting segments per unit volume, and agyy 18
the area swept out by a segment after its release. In the special case of one-
dimensional dislocation motion, which one might expect when the barriers
are linear, one may instead use the total dislocation length per unit volume
that is waiting, pwart, and the distance traveled after release, yrun:

8y = b pwarr Yrun OP. [33b]

We shall often use the more common relation [33b] with the understanding
that, in the case of two-dimensional glide, it is merely meant to represent eq.
[33a]; for example, by introducing an average segment length / and setting
PwalT = NWAILZ Yrun = arun/l. [33c]
For general usage, we also define y, so that
Sy — 7, P, [33d]

The reason for the release of a dislocation (segment) from an obstacle, i.e.
for a finite 8P, may be thermal fluctuations occurring at a rate P, per unit
time:

8Pruerm = Py 0L [33e]
Here, P, may be a simple Arrhenius term
AG
P, = vg exp (— I}?‘) [33f]

or other appropriate forms to be discussed in Chapter 4.

On the other hand, the reason for the release may be mechanical: if the
applied stress is increased, an additional fraction of obstacles can be overcome
by the dislocation:

8Pyecy = P, 80 (60 = 0). [33g]

This is precisely the same effect as was described in connection with the
influence of any aperiodicity of the obstacle arrangement on the plane glide
resistance (sec. 25). From Fig. 25-12 we see that P, should be of order 1/#pLane-
A decrease in stress does not change the number of obstacles that hold back a
waiting dislocation. ’
Finally, a dislocation may be released at an obstacle point, if this point
disappears through recovery. This effect may be described as a change in the
plane glide resistance, which is proportional to the density of obstacles along
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the dislocation and furnishes the scale of Fig. 25-12. Taking # = fpLang as a
representative value, we set

8Psrruct = P 87 | [33h]

If obstacle points disappear, 8% is negative; for a release of dislocations
(8Pgrruct > 0), P, must then be negative also. In fact, if the situation is de-
scribed by a one-parameter diagram such as Fig. 25-12, the penetration
probability is a function of the ratio o/# only, and we have

P,=—2-P, (P=P(a/)). [33i]

When there is more than one set of obstacles, the relation is more complex.
For example, when there is a linear superposition with a flow stress #, due
to an obstacle set whose density does not change, such as inclusions, eq. [33i]
must be replaced by
p=-2""1p, [33i']
F— 4,

Additional obstacles may appear, under some circumstances, through work
hardening; however, it is extremely unlikely that they would appear exactly
at a waiting dislocation. Thus, a positive 87 would not affect 8Psrruct, and
we have for the total release probability

8P = 3P THERM T 8P, MecH T 8P, STRUCT

with each term positive. The strain increment becomes
8y = y, (P 8t + P, 80 + P, 8%). (3351

This is a general, statistical-kinematic relation for jerky glide. It was intro-
duced by Kocks (1970b). We will discuss it again in the form of time rates,
under certain restrictions concerning the times over which the rates are
smoothed out, after dealing with the mobile dislocation density contained in
the term v,

Waiting, Running, and Mobile Dislocations

Until now, we have only discussed virtual variations, in which dislocations
were transferred from one “waiting”” position to another without considera-
tion of the time involved in this transfer. In reality, a finite time is required.
Then, the (potentially) mobile dislocations fall, at any one time, into two
classes: those that are actually running, and those that are waiting.

At any instant, the macroscopic strain rate is provided only by those dis-
_locations that are running (eq. [320]):

¥ = b prun Trun- [33k]

These are “generated”, or rather transferred into the running from the waiting

e
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state, by release at the occupied obstacles, at a rate pwartl; and they are
transferred back into the waiting state after they have traveled a distance
Yrun (€9. [33b]). One may look at this as-a generation-and-trapping problem
much as was discussed, for continuous glide, in eq. [32t], only for the running
dislocations: _
. 5 D
Prun = pwarr P — PRU—”EE- [33€]
YrRUN
The solution to this differential equation, for zero initial running density is

prun = prun [1 — exp (;t/ trun)] [33m]
where phun = pwarrPtrun is the steady-state density, and the running time is
frun = Yrun/Drun- [3391

At times long compared to fzyn, When a steady state has been achieved
between the running and the waiting densities, the left-hand side of eq. [33£]
must vanish. The strain rate (eq. [33k]) then becomes equal to

9 = bYrun Pwart P (steady state mobile density). [330]

This relation is similar to eq. [33b], with the virtual variation replaced by a
rate of change with time. When two states are allowed for the mobile disloca-

tions, they must be in kinetic balance with each other for the simple rate equation

to hold. We can then replace eq. [33d] by
y = 'yoP [33P]

where P is the total derivative of P with respect to time and may involve terms
proportional to ¢ and + (eq. [33j]).

Equations [33k] and [330] are not in a truly useful form, since one of them
relates only to the running dislocations, the other only to the waiting ones.
During all transfers between these two states, the foral length of dislocations
in both states is constant. This is the mobile dislocation density

Pm = pwarr T Prun- [33q]

With this definition, one can combine eqs. [33k] and [330] to give the most
commonly used relation for the strain rate:

b pm
Y= 7 Pm YRoN (steady state mobile density) {331]
twarr + trun

where, for esthetic reasons, we have set P = 1/tya,r. (Note that this refers to
the fotal differential P, not to the partial P,.)

All these relations have been written for one-dimensional glide; but they
may, by virtue of the definitions [33c], be used for two-dimensional jerky glide
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as well. Explicitly, one may write'egs. [330] and [33r] as

b N
¥ = b agun Nwarr P = _2dron Tm [33s]
twarr T IruN .
Using the general term y, introduced in eq. [33d], one must identify
1 1
o = b ' ————— = bagyn N ——————. [33t
4 Vrun P 1+ P tryn R T P trun ]

The fractional correction factor is usually quite close to 1: the running time
is small compared to the waiting time, and almost all mobile dislocations are
waiting rather than running.

It is a characteristic of jerky glide that eq. [33r] does not involve a velocity, but
times. In an entirely arbitrary fashion, one may definre an average velocity of all
mobile dislocations (i.e. both the waiting and the running ones) in steady state as

YrUN

V= PR [33u]
so that
3 = bpmUm. [33v]
Conversely, with at least as much justification, one may define
p* = pwair P [33w]
so that in steady state (OROWAN, 1940)
¥ = byrunp*. [33x]

Here, 5*, by the definition [33w], is the rate of generation of running dislocations;
it is not a rotal differential as all other dotted quantities are in this article. Nothing
is gained by either the formulation [33v] or [33x], and we shall remain with egs.
[33p] with [33t], or [33r], or [33s].

Other recent discussions of the dichotomy between ‘‘velocity’’ and ‘‘generation”
treatments, and of steady-state problems with mobile dislocations in general, were
given by MECKING and LUCKE (1970) and by pERoOSSET and GraNATO (1970).

Mobile Dislocation Deﬁsity and Active Slip Plane Spacing

We have now answered the question, how the density of dislocations actually

- running is related to those potentially mobile. But what determines the mobile
density ? In a sense, one might say that the introduction of a ““mobile”’ density,
~which comprises both the running and the waiting dislocations (eq. [33q]),
and of an average velocity of these mobile dislocations (eq. [33u}), is tanta-
mount to describing jerky glide in terms of continuous glide. The same argu-
ments as were used in sec. 32 must then apply here: maintenance of a
sufficient density of mobile dislocations requires the existence of sources, to
balance the unquestioned existence of sinks, at least at the surface. Equation
[32t] then describes the kinetic balance. The source density psource, and the
distance ygack that controls its frequency of operation, may have one of the
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forms outlined in the case of continuous glide, or they may be different, as

discussed in an example below. The distance y,, traveled by the mobile dis-

locations may, however, be different in principle, since it could be determined BN
by the peaks in the glide resistance allowed in jerky glide.

If the glide resistance may be considered to consist of two components, such as
in Fig. 24-6, one may elect to treat the small-amplitude variations as smoothed out
and overcome in quasi-continuous glide and the large peaks as the sinks and
sources of the ““mobile” dislocations in the quasi-continuous-glide region (MECKING
and LUCKE, 1970; DEROSSET and GRANATO, 1970). If the distance between the peaks

. is L and the slip plane spacing is d, this model would correspond to setting

3 1 |
1 PSOURCE = Ei; Ym=1L. [33y]

Depending on whether ypack is also set equal to L, signifying a direct correlation
between neighboring sources, or whether it is related to the internal stress variations
associated with the other mobile dislocations in the manner of eq. [32v’], the steady-
state results are, from eq. [32t],

1 b
Yeack =L > pm= )78 Yo = [33z]
1 1 bL
! Yeack = \/_P—m > Ppm = d_z; Yo = P [33aa]

In the first case, there is always exactly one dislocation mobile between each pair
of peaks; in the second, there are L/d. The case in which the average number of
mobile dislocations between peaks is much less than one, as it was apparently
envisaged by MEckING and LUckE and by DEROsSeT and GRANATO, does not lead
to a determination of y,—it is rather a higher-order treatment of jerky glide between
the peaks.

The slip plane spacing d appears again in both of the above equations. In
the case of continuous glide (sec. 32), we had estimated a value for d from the
requirement that dislocations moving in opposite directions on parallel slip
i planes must bypass each other. In jerky glide, one may allow these disloca-
tions to trap each other in dipoles: if these dipoles are not completely free to
move in the slip plane, they may provide an added glide resistance. The
statistics of such a process are very complicated and have been worked out
‘ under various assumptions by ARGON (1969) and by NEUMANN (1971).
| In one simple case, the slip plane spacing can be given explicitly; namely,
when the glide resistance consists of well-separated discrete obstacles or,
| more generally as above, of well-separated large peaks with a small-scale
: variation in between, which is approximated as a “friction” stress =,. In that
case, even those dislocations that are waiting at the high peaks may translate -
under the action of parallel mobile dislocations until they are both in the
quasi-continuous regime. The passing stress (eq. [32x]) must then be provided
by the difference between the applied stress o and the “friction’ stress =,; no
added contribution to the glide resistance is necessary if

O = TpLANE- [33bb]
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The smallest spacing d, providing the highest strain rate without affecting the
flow stress is thus given by
b 4no ™ [33cc]
d I
Equations [33cc] and either [33z] or [33aa] combine to give a result
(OROWAN, 1941) that the steady-state mobile dislocation density depends
linearly on the applied stress (minus any friction stress). Other evaluations of
[33aa] may give a quadratic law. In the case of jerky glide treated here, this
is a very insensitive dependence compared to that of the ‘“‘velocity” or P
(provided the stress is large compared to 7;). Under those conditions, one
may then well consider the pre-exponential factor in the Arrhenius relation
to be constant. ‘

Work Hardening and Recovery

In the expression for mechanical release from obstacles (eq. [33g]), we
allowed for a variation in structure described by a change in 7. This was, in
part, in anticipation of including recovery in the rate equation. It is apparent
that the disappearalice of some obstacles through recovery releases disloca-
tions in the same manner as thermal fluctuations do. The only difference is
that, in recovery, the change of the obstacle is permanent.

On the other hand, some additional obstacles may appear through work
hardening. They cannot release dislocations; but their number must be sub-
tracted from the number of those disappearing through recovery to obtain the
net change in obstacle density.

The density of discrete obstacles is one parameter that enters, through their
average spacing /, into the relation for the line or plane glide resistance and,
in particular, into its maximum value #. When the nature of the obstacles,
and thus their strength, remains constant, we may use 7 as a measure of the
obstacle density as it changes through work hardening or recovery:

8% = hdy — rat. [33dd]

The meaning of this equation is that the flow stress (the asymptotic plane
glide resistance) is measured at zero temperature, once as a function of pre-
strain in the absence of thermal fluctuations, and once as a function of
recovery time (at some temperature and possibly some stress in the elastic
range) in the absence of (net) glide. Formally, one may then define the co-
efficients # and r as partial derivatives at constant time and strain, respectively:

a7
. dy t’
o7
3t

h

i

[33ee]

~
i

[33ff]

Y

We are here primarily interested in the total time derivative of #:
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A T 5
f=_=hy—r. [33gg]

The rate equation [33p] for a steady-state running dislocation density then
reads, with eqgs. [33i] and [33]], for a one-parameter obstacle structure

7:70Pt+7opd{d_g'(h7_r)}' [33hh]
T

If the structure is in steady state (or if it is constant for other reasons), the
left-hand side of eq. [33gg] vanishes, and so does the last term in eq. [33hh].
In a creep test (¢ = 0), we are then left with the conventional Arrhenius

relation
7 =" P [33ii]
Equations [33gg] and [33ii] are two simultaneous equations for steady state

at all levels, from which the structure parameter # can be eliminated to obtain
a constitutive relation (Kocks, 1974a).

In addition to changes in obstacle density, there may be changes in obstacle
arrangement with time (ALDEN, 1972, 1973). If they lead to more extensive clustering,
they, too, should lead to a partial lowering of the flow stress. In contrast to recovery,
this ““metarecovery’” may be reversible.

34. PHENOMENOLOGICAL KINETICS

We have discussed two sets of physical kinetic laws: one for continuous
glide above the mechanical threshold #, one for jerky glide below. They are
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displayed together in Fig. 34-1, a linear diagram of (average) dislocation
velocity versus stress up to their respective natural limits, the speed of sound
s and the theoretical shear strength mipeac. The strain rate 7 observed macro-
scopically contains, in addition, the kinetics of the mobile dislocation density,
which was also discussed in physical terms in secs. 32 and 33.

The general diagram of dislocation velocity (or of strain rate) versus stress
has been described, in whole or in part, by various empirical laws. It is of the
essence of plasticity that such laws contain structure parameters. Before dis-
cussing empirical descriptions, we shall therefore consider the problem of

“structure” in its relevance to constitutive relations.

Constitutive Relations

An “equation of state” for plasticity, when it is assumed, has frequently
been written in the form :
f(y,t,0,T,...)=0. [34a]

The dots stand for additional variables such as pressure or other components
of stress, magnetic fields, etc. In addition, the equation contains material
constants. If one is interested in rates, one may differentiate this equation with
respect to time and write

f(7,6,T,v,t,0,T,..)=0 [34b]

The chief problem with such equations is that two of the variables, namely
y and ¢, do not describe any “state”, but a history: they specify differences
against some assumed initial state. (See also HarT, 1970; Kocks, 1974b.)
Moreover, they are only two parameters of the thermo-mechanical history,
and many more may be relevant:

{r, t} < {History}.

If one inserted the entire set of history variables into eq. [34b] instead of y and
t, the equation would have to be correct, but it would then, by definition, not
be an equation of state.

The premise made to deal with such problems in Physical Metallurgy is that
history has an effect on properties only through the structure developed while
it passed; the present properties are uniquely determined by the current
structure (in other words, the current state):

{History} — {Structure}.

In fact, different histories may lead to the same structure, and then the pro-
perties must be the same. The ““Structure” is a set of parameters of state, and
one might thus call the resulting general relation

f(3, 6, T, o, T, {Structure}, {Structure Changes}) = 0 [34c]

an-“‘equation of state”’. HART (1970) has recently re-introduced this term in a
more restricted sense, namely for the case that there is but one “Structure”
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variable (the “hartness”), which can then be uniquely expressed by the values
of all external variables. We shall simply refer to equations of the form
[34c] as constitutive laws.

For plastic deformation by dislocation glide, we have found how the
structure influences the properties: through the glide resistance = at all
positions in the crystal. For macroscopic slip, we further need the mobile
dislocation density p,, or an equivalent parameter, which may be included in
the general set of structure variables. If we characterize the glide resistance
by a finite number of parameters such as its overall average rsror and its
effective maximum values under various conditions, we may write

{7sToRs TPLANEs TLINEs ---» Pm} © {Structure}. [ : [34d]

The dots may stand, for example, for a particular contribution to the glide
resistance such as from lattice friction.

Under various conditions, some of these parameters become irrelevant, and
then the problem may become tractable. We have encountered three of these
conditions, all steady states in their respective variables.

First, the mobile dislocation density may attain its steady-state value under
constant stress, structure, and temperature. It is then uniquely given by these
variables and is no longer an independent variable:

pm < {Structure}.

Equation [34c] becomes

f(y,0,T,7) =0 (steady-state mobile dislocation density) [34¢]

where = stands, in principle, for the entire glide resistance profile throughout
the crystal, i.e. all parameters of structure except the mobile dislocations.

Second, dynamic arrangements of mobile dislocations may form in the slip
plane such as to smooth out variations in the line glide resistance. Then,
#Line Decomes irrelevant:

#Line ¢ {Structure}
and we may write

f(y,0, T, #pLang) = 0 (steady-state dynamic [34f]
dislocation structure)

if we neglect rsror and any possibility to differentiate between various con-
tributions to #p; sng. Cho0SsIng 7py ang a8 the first or most important structure
parameter is suggested by Fig. 34-1, and we shall use constitutive relations of
the form [34f] unless macroscopic observations warrant the introduction of
additional parameters. For generality (or as an abbreviation for the first
approximation [34f]), we shall write it in the form [34e].

Finally, at temperatures where the structure is not thermally stable, #p; sng
may attain a steady-state value that is uniquely determined by a balance
between work hardening and recovery at a given strain rate, temperature, and
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stress (sec. 33). Then,
#pLane & {Structure}
and the constitutive relation becomes
f(y, o, T, 7stor) = 0 (steady-state structure). [34g]

Note that the average glide resistance 74yor, Which describes the rate of energy
storage associated with flow, can never disappear from the equation for
thermodynamic reasons (eq. [22h]). It may vanish for certain mechanisms,
but it could be nonzero even when the “Structure” that enters the rate
equation is constant as in eq. [34g]; for example, internal surfaces may yet
be generated by glide (or climb) and not be capable of recovery at the same
temperature in a time comparable with the experinent.

These examples illustrate the general phenomenon that each level of steady
state reduces the number of independent variables by one. Conversely,
successive approximations to an adequate description of “Structure” in the
constitutive relation can be obtained when the time resolution of the experi-
ments is increased and the various transients are analyzed.

Empirical Laws

An empirical law is meant to be a simple relation that describes experi-
mental observations tolerably well over a limited range of the variables.
Good empirical laws can be used to extrapolate slightly beyond the range of
observations, although extrapolation far beyond the intended range may often
- violate some known physical limitation. For example, the most frequently
used law to describe the relation between strain rate and stress,

y = Ao™ [34h]
implies no upper limit for the strain rate or for the stress. For physical
reasons, however, the strain rate can at most correspond to the case where all
dislocations (of length p per unit volume) are running at the speed of sound
vg:

y < bpvg [34i]
and the stress cannot be larger than the ideal or “theoretical’’ shear strength:

0 < TIDEAL- [34i]

Within this range, eq. [34h] may nevertheless describe the behavior toler-
ably well. For example, we have seen that, in continuous glide well above the
mechanical threshold #, a power law with a small exponent should obtain:

v‘=y‘o(—)“’; o>% 1<mga [34K]

To.

Here, we have split up the single empirical parameter A in eq. [34h] into
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two, 7, and a,, which have the dimensions of the variables under discusston.
Their relation to known material properties may, under some circumstances,
be guessed rather easily. For example, in the absence of any glide resistance
of influence, the shear modulus u would be a logical material constant to be
substituted for o,. Some further insight into the physical process that limits
deformation rates in continuous glide would, on the other hand, lead one to
expect the combination oQ/kT (Q = atomic volume), which is proportional
to the drag limited dislocation velocity (eq. [311]). If the excess of the exponent
m over 1 is due to mobile dislocation interactions (sec. 32), we could rewrite
eq. [34K] as follows:

,;:y-o'ﬁ(fi) e>41<msa. [34(]
“

This equation contains an additional variable, the temperature 7, but still
only two unknown parameters—only one of which, 7, is likely to depend on
material and dislocation structure. It could thus be a very useful empiricallaw.

With additional sophistication, one would want to take account of the
mechanical threshold #. However, we know from physical cases treated in
sec. 32, that it cannot simply be subtracted from the applied stress o to obtain
an “effective stress””. More likely to succeed would be an empirical equation
of the form

y = %(U" — gpymip o>#p2 L. [34m]

But this equation contains four unknown parameters and still only three
variables. It thus has little predictive value. Furthermore, the applicability of
the physical picture near the limit o ~ # is restricted to obstacles that cannot
be overcome thermally.

.Y

Fic. 34-2. Schematic strain-rate versus stress diagrams suggested by physical
mechanisms below and above the mechanical threshold # separately. Dashed:
continuous glide in the absence of a threshold.
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Figure 34-2 shows the qualitative predictions for the physical mechanisms

- of continuous glide and jerky glide separately, and also (dashed) a schematic

representation of egs. [34k] or [34£]. It is clear that for o ~ 7, neither picture
can be adequate, and eq. [34m] provides little if any improvement over €q.
[34£).

FrosT and AsHBY (1971) have treated the threshold region exactly for a
particular physical model. As a guideline for possible empirical equations,
their results are shown in Figs. 34-3 and 34-4. (The mobile dislocation density
is here assumed constant, and thus m = 1.)

The double-logarithmic diagram suggests that, even for o < 7, a power
law (eq. [34h]) may be a reasonable empirical description, except that the
exponent m would now have to be rather large. Any number that is very large
or very small compared to 1 is unlikely to be a merely geometric parameter,
but more likely to be the ratio of some physical quantities. Indeed, the large
value of m necessary if a power law description is formally applied below the
mechanical threshold #, follows from a description of jerky glide in terms of
an Arrhenius law:

AG(o).

Y = Yo €Xp — 5T Tstor < 0 < F [34n]
where, for a simple demonstration, we may assume
AG=F, (1 ~ g). [340]
7 .

d»iq.

2 4 6 81 12

Fic. 34-3. Results of FrosT and AsuBy (1971) for jerky glide with drag, adapted
to show transition near mechanical threshold.
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a
log(Yo)
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FiG. 34-4. Same as Fig. 34-3; but on double-logarithmic scale.

The terms F, and # may here be regarded as empirical parameters. Equation

[34n] then becomes
g F,/kT
7= [er0 (31| [34p]

which, for values of o not too far below #, may be approximated by

g

F, /KT
P () reron € 0 < % [34q]

A

In other words, eq. [34k] holds with
F,
> = 73 m= = jerky glide). 34q’
o, =% T (jerky glide) [344']

The large number m thus corresponds to the ratio of an “activation energy”’
to kT—and a new physical variable has again been introduced into eq. (34k].

Of course, m may not be strictly independent of o, if the more exact eq.
[34p] holds, or if AG is a different function of o than that shown in eq. [340].
For these cases, when m depends on o, it is more appropriately defined as the
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slope in the diagram of Fig. 34-4:
diny

[34r]

dlno|r

Any dependence m(c) could only be seen in Fig. 34-4, if the scales were
changed such as to make the lines less steep.

As in the continuous glide case discussed above, basic physical arguments
actually provide a better proposal for an empirical relation between the
activation energy and the stress than the linear one given in eq. [340] (see
sec. 44). With it, eq. [34p] could be replaced by

F, o\P]3/2
) = yoeXp{— -~ |1 — (—) ] }; O0<p<l [34s]
Y=Y P{ kT[ : p

Again, the number of parameters has now risen to four, for three variables.,
Nevertheless, this may be an acceptable empirical relation, since it is rather
insensitive to one of the parameters, namely ¥,. If p should be observed to
have a value small compared to 1, this may be an indication for an additional
physical mechanism, say with maximum glide resistance 7, ; then, ¢ has to be
replaced by (¢ — 7,) or a similar “effective stress’. :

Regardless of the particular form of the empirical law, the combination of
variables to be used to describe flow below the mechanical threshold is
suggested by general physical arguments for jerky glide to be

T
’i—lny—f’ versus

F, v
Structure parameters in addition to # should be used only when warranted
by the observations. Some authors have used the value of the stress, “where
the strain rate goes to zero”, as it appears, for example, in Fig. 34-3 at about
0.84, as a parameter associated with some additional mechanism (“‘internal
stress™). It is clear from the same figure, however, that the exponential depen-
dence alone, with the high exponent F,/kT, implies such a severe decrease of
the strain rate with mildly decreasing stress. The “internal stress level” could,
therefore, serve merely as a measure of the maximum glide resistance 7,
provided it is agreed what “vanishingly small” strain rates are; but it need
not be an additional parameter.

The exponential laws, like the power laws, do not account for the natural
upper limits to strain rate and stress; in addition, the exponential laws imply
a finite strain rate at zero. stress. Again, a different mechanism must prevail
here. In fact, we have seen from thermodynamic arguments, that long-range
slip is impossible below ¢ = Tgror. Near this value, the response should be
linear; we shall discuss the reasons in more detail in sec. 45. A sensible
empirical law for the low-stress range should then be

! Q

7= AT TR exp — 1% rerox < 0 € 7. [341]
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This is another power law, with m = 1 and with a corrected stress. In addition,
it describes the temperature dependence, using a total of three parameters.

Summarizing, we have found three acceptable empirical relations, all power
laws, for three different ranges of the strain rate versus stress relationship:
eqs. [34€], [34q), and [34t]; only the regime of very high y (where the dislocation
velocity gets close to the speed of sound) shall remain undescribed.

Some general rules about empirical laws, which we have more or less
explicitly used in this survey are:

(1) The minimum number of parameters in an empirical law is one less
than the number of variables with different dimensions.

(2) The number of additional parameters, which are now dimensionless,
should be no larger than is warranted by the experimental observations
over the range of interest.

(3) A dimensionless parameter whose value is large or small compared to
1 is likely to hide additional physical variables that should be con-
sidered.

(4) Physical mechanisms can often suggest dimensionless combinations of
variables; when these have been found, the predictive value of the
empirical law beyond the range of observations is enhanced. On the
other hand, physical mechanisms will also usually suggest natural
limits for the applicability of an empirical law.

(5) When different physical mechanisms are expected in different ranges of
the variables, it is of little value to attempt description by a minimum
number of parameters, or even by a single empirical law.

Such overall descriptions of many ranges of the strain rate versus stress diagram
have been attempted. For one, the overlap between the very-low-stress and the
“‘jerky glide” regimes has been given by

2Vo(‘7 - TSTOR) o
kT P TRT
We shall show in detail later (sec. 45) that this law provides no improvement over
the linear equation [34t], except when the glide resistance diagram has the rather
pathological shape of a square wave.
An empirical law that could qualitatively describe the entire strain rate versus
stress diagram as shown in Fig. 34-1, without the very-low-stress range, but includ-
ing the very-high strain rate range, is

5 = poexp [— —] [34v]

y = y, sinh

with

yo = bpvs; o, oC 7. [(34v']

But obviously this law has too few parameters for the large range. The parameter
choices [34v’] were made with the high-speed and the jerky-glide regimes in mind;
it is very unlikely that they describe the drag-controlled region for all but a single
temperature (namely, the one deliberately chosen in Fig. 34-1). Note that, for other

[34u] -

e
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temperatures, the direction in which the curve changes is different in the different
regimes (cf. Fig. 34-4).

We also know that the dependence on stress given in [34v] is wrong in each range.
If the parameters were chosen such as to represent the correct dependence in any
one range (say, the jerky-glide region) as well as possible, there is no reason why
they should even approximately describe another region (say, why y, should then
have anything to do with the speed of sound). For these reasons, we find eq. [34v]
of little use.

‘Multi-axial Stress States

From sec. 22 on, and for the remainder of this article, we have assumed all
stresses and strains to be resolved in the slip plane and slip direction, and have
discussed the kinetic laws governing their relation to each other. Constitutive rela-
tions comprise, in addition, statements concerning the yield condition when many
components of stress.are present, and concerning the plastic potential that describe
the relation between the ‘‘direction’ of strain increments and the ‘‘direction” of
stress.

In their classic form, the yield condition and plastic potential are only defined
in the absence of rate effects. Their superposition with kinetic laws is, however,
possible. Without discussing this problem in detail, we merely wish to point out
here how the concept of a yield surface fits into the framework we have presented.

The definition of the mechanical threshold #pLane as the highest stress at which
static equilibrium can be attained in a slip plane may easily be extended to all slip
systems in the crystal. In this way, one would obtain the “‘yield surface” of the
crystal at zero temperature. If any combination of applied stresses exceeds this yield
surface, dislocations are under positive driving force everywhere and must accelerate
or do work against strictly dissipative mechanisms. On the other hand, if a com-
bination of stresses lies inside this ‘‘zero temperature yield surface”, or mechanical
threshold surface, finite rates of deformation are also possible: namely, with the aid
of thermal fluctuations. Thus, for most normal situations, the yield surface for a
particular finite strain rate lies inside the “‘static” yield surface, defined as the limit
of static equilibrium states (Kocks, 1970a, 1974b).

Instead of using the mechanical threshold #, one may wish to consider rsror and
extend its definition (sec. 22) to all slip systems. In this way, one would obtain a
“‘yield surface” below which macroscopic plastic deformation is thermodynamically
impossible. Such a definition may have been implied in conventional treatments of
mathematical plasticity ; however, it defines a critical stress that is, in most practical
circumstances, very much smaller than a “‘yield”’ or “flow” stress in any macro-
scopic sense: most of the work done in plastic deformation is dissipated, not stored.




4. THERMAL ACTIVATION

Summary

While Chapter 3 dealt with the motion of dislocations at stresses above the
peaks of the glide resistance, we shall here be concerned with the thermal
release of dislocations from regions in which the stress is below some of the
peaks of the glide resistance. Each dislocation is supposed to start at rest
in a position of static equilibrium (the problem of superposition of the dynamic
motion between the obstacles and the thermal release at the obstacles having
been treated on a formal basis in Chapter 3).

Thermal activation is a statistical process. It is never possible to say at
which time a particular dislocation segment may be released. In this sense,
we will always be dealing with averages. The fraction of a large number of
identically situated dislocation segments that is released per unit time has
been introduced in eq. [33¢] as P,. The ensuing macroscopic strain rate

')":")"oPt

contains, in addition, the total number of dislocation segments taking part in '
the process and the average strain achieved with each activation event; these
have been lumped together (egs. [33d] and [33ii]) into a term ¥, that, in this
Chapter, is treated as a phenomenological parameter that may depend weakly
on stress (and possibly ‘on temperature through the shear modulus).

In principle, thermal activation events may occur in the “reverse” (<) as
well as in the “forward” () direction. The net rate of strain is then given by
the difference

R —

Y= ')’oP t YOP t
In most dislocation problems, the rate of thermal release in the reverse direc-

-

tion, P,, can be neglected because, under the applied driving force, disloca-
tions move large distances after each forward activation event. Cases in
which reverse jumps must be considered are therefore postponed to the end
of this Chapter (sec. 45).

The activation rate P, depends, in a simple picture, on the frequency of
attempts at overcoming a particular obstacle, and on the chance of success. In
a more macroscopic picture, it depends on the frequency with which the total
energy of the crystal is redistributed between its various parts, and on the
probability that one of the fluctuations in energy exceeds a certain magnitude.
Very precise statements can be made about the probability of a fluctuation
between specified equilibrium states (sec. 41). The frequency with which

10
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fluctuations occur is much harder to calculate (sec. 42). Fortunately, for many
problems, it is sufficient to know this frequency factor to within about onz
order of magnitude accuracy, since it occurs in a pre-exponential term.

The probability of an energy fluctuation of sufficient magnitude to cause
activation is, in all cases of interest here, given by a Boltzmann distribution.
The activation energy depends sensitively on stress; for example, it must go
to zero when o reaches the maximum glide resistance #. This stress dependence
is at the heart of all thermal activation problems in plasticity. It will be dis-
cussed on a formal basis in sec. 43; some examples based on physical models
will be given in Chapter 5.

The ““activation energy’’ will also, in general, depend on temperature. If it
does, there is a difference between the activation enthalpy AH and the free
enthalpy (or Gibbs free energy) of activation AG. In principle, AH is not
only more easily obtained from experiments, but also with more certainty
from theory. In practice, however, any difference between AH and AG can
only be dealt with when the reason for the temperature dependence is known;
for example, when it is due to the temperature dependence of the shear
modulus. We come to the conclusion (sec. 43) that, because there is usually
more than one mechanistic contribution to the glide resistance, it is preferable
to deal with AG only, in the form

AG = ub-g (f)
n

or simply
AG = AG(o)

when there are no temperature effects.

The calculation of AG, which is an equilibrium property, is based on the
equilibrium properties of the dislocation segment involved: they are described
by the line glide resistance diagram 7;ne(a). The length of dislocation that
is in direct contact with the obstacle is much shorter: it feels the element glide
resistance g ey Of the obstacle and is influenced by it in its vibration fre-
quencies. Macroscopically, however, neither the detailed behavior of the
short length of dislocation in contact with the obstacle, nor that of the seg-
ment undergoing a local thermal activation process can be observed: only the
average behavior of certain critical, or “rate controlling”, obstacles can. This
is described by the plane glide resistance rp ang- In this Chapter, all of these
different glide resistances, which were discussed in detail in sec. 23, become
important at various places; it is thus necessary to keep them well identified.

We will eventually introduce (sec. 44) one further material property desig-
nated by the symbol r: the flow stress T ow = 7. It is a macroscopic measure
of the structure through the (plane) glide resistance at a standard temperature
and strain rate and will be extensively used in data analysis (Chapter 6).

There have been many excellent discussions on the details of thermally
activated processes in solid state diffusion and dislocation motion. Of these

P.M.S.—E
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we find the following especially useful for further reading:

Basinsk1 (1959), Thermally Activated Glide in Face-Centered Cubic Metals and its
Application to the Theory of Strain Hardening;

BurkE (1965), The Kinetics of Phase Transformations in Metals;

CurisTIAN and MASTERs (1964), Low-temperature Deformation of Body-Centered Cubic
Metals: II. Mechanism of Thermally Activated Flow;

JdeMEESTER, YN, DONER, and CONRAD (1973), Thermally Activated Deformation of
Crystalline Solids;

Dorn (1968), Low Temperature Dislocation Mechanisms;

FRANK (1968), Thermally Activated Dislocation Motion in a Solid Containing a Multiple
Spectrum of Dislocation Obstacles;

Gies (1965), The Thermodynamics of Thermally Activated Dislocation Glide;

Gigss (1969), Thermodynamic Analysis of Dislocation Glide Controlled by Dispersed
Local Obstacles; :

GLASSTONE, LAIDLER, and EYRING (1941), Theory of Rate Processes;

GRrANATO, LUCKE, ScHLIPF, and TEUTONICO (1964), Entropy Factors for Thermally
Activated Unpinning of Dislocations;

HirTH and Nix (1969), An Analysis of the Thermodynamics of Dislocation Glide,

L1 (1965), Thermodynamics of Dislocation Mobility and the Third-law Analysis of the
Activation Process;

ScHOECK (1965), The Activation Energy of Dislocation Movement.

ScHoEck (1974), Thermodynamics and Thermal Activation of Dislocations;

SEEGER (1958), Kristallplastizitat;

VINEYARD (1957), Frequency Factors and Isotope Effects in Solid State Rate Processes.

41. FLUCTUATIONS IN THERMAL EQUILIBRIUM

Almost always, the glide resistance is not uniform, but has peaks and
valleys associated with the cutting or bypassing of linear barriers or localized
obstacles. At absolute zero (and ignoring the zero-point energy of the atoms)
these barriers cannot be overcome unless o exceeds the local peak glide
resistance, #;ne. But at any temperature above absolute zero, thermal
fluctuations redistribute energy; this means that a finite probability exists
that the dislocation can penetrate the peaks in the r—-a curve, provided only
that, macroscopically, the Second Law is obeyed (¢ > Tsror)-

These fluctuations constitute a part of the equilibrium properties of a body
kept at constant temperature. In this sense, it was inconsistent to treat, in
Chapter 2, the equilibrium of dislocations with obstacles without regard to
thermal fluctuations: we dealt only with static equilibrium. This static state
will now serve as a reference state; for example, the energy necessary to over-
come an obstacle quasi-statically is precisely the energy that must be supplied
by thermal fluctuations, if the obstacle is to be overcome by thermal activation
(see, for example, HART, 1958).

Activation Free Energies, Activation Work and-Activation Area

Figure 41-1 shows a glide resistance diagram and an applied stress o that
is lower than the maximum value #,;ne. A dislocation traveling from left to
right is under a positive driving force b(c — 7) in some regions, but would be
in (static) equilibrium at position S. A finite increment of area further on
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Fic. 41-1. (a, b) A glide resistance diagram illustrating the quantities AG, AF,
AW and Aa.

would be a second equilibrium position, U. The first one is stable, the second
unstable. If thermal fluctuations transferred the dislocation from the stable
to the unstable equilibrium position, it would then again be under positive
driving force. '
The difference in energy between the stable and the unstable equilibrium
states, at the given stress and temperature, is the shaded area in Fig. 41-1a:

AG = [ (re — )b da. [41a]
We have identified it with a difference in free enthalpy, AG, and shall discuss
this nomenclature below.

The probability, pg, of an equilibrium fluctuation in energy greater than a
given value AG, at a given temperature 7, is equal to a Boltzmann term
involving this energy, that is,

AG .

Pg = €Xp T [41b]
where k is Boltzmann’s constant. (See, for example, SLATER, 1939; TURNBULL
and FISHER, 1949; but also EscaIg, 1970.)

Figure 41-1b shows a different illustration of the same process. Consider
a dislocation that is reversibly, with stress rising from zero, brought to the
stable equilibrium position S: a certain amount of work (given by the stippled
area) is done during this process. If the dislocation were removed from the
unstable position U in a reversible manner also, an additional amount of
work (given by the second stippled area) would have to be done. The remain-
ing area under the glide resistance diagram (cross-hatched area) is the (Helm-
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holtz) free energy necessary for activation:
ay(o)
AF(0) = rune bda [41c]
ﬂsfl’)

Not all of this free energy must be applied by thermal fluctuations, since
at constant applied stress, some work AW would be done during activation
(in addition to the work done as the dislocation was brought up to S and
was removed from U):

AW(o) = boha(o) | [41d]

where

Aa(o) = ay — ag [41e]

is the difference in area swept between the unstable and stable equilibrium
states, or the activation area. We call AW the activation work; its geometric
representation in a glide resistance diagram is shown in Fig. 41-1b.

Subtracting the work done by the applied stress during activation from the
(Helmholtz) free energy necessary for such an activation to take place, we
obtain the energy that must be supplied by thermal fluctuations at constant
temperature and stress:

AG = AF — AW. [41f]

Insertion of the expressions [41c] and [41d] shows that this is, of course, the
same AG as was introduced in eq. [41a]; Figs. 41-1a and b illustrate the
relation as well. A third, equivalent, expression for AG, which will be used
most extensively, is self-evident from Fig. 41-1:

9LINE
AG = f bAa dry . [41g]

o

The energy AG to be supplied by thermal fluctuations at constant temperature
and stress is commonly called the activation free enthalpy, or the Gibbs free energy
of activation. This nomenclature, and the use of the symbol G, is not identical with
that common in thermodynamics, where the conventional definition is G = U —
TS + pV, and the difference expression at constant temperature and pressure reads
AG = AF + pAV. It would indeed be the correct activation energy in the absence
of any other work terms. The usage according to eq. [41f] (e.g. SCHOECK, 1965;
GiBBs, 1965) comes from an analogy with this conventional definition for the case
that a different work term (eq. [41d]), but again only one, is present, and the respec-
tive stress component is prescribed. One can then set

G=U-—TS — oba
and eq. [41f] follows as the difference between two states at the same T and o.
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This nomenclature is unfortunate in the sense that, when other work terms are
present, they must all be included in AW to give the activation energy AF — AW,
The activation energy [41f] is thus exactly analogous to the quantity — A ¥ defined
(as a virtual variation and with the opposite sign) in eq. [21r]. The analogy is also
obvious in Fig. 41-1a: where the driving for¢e ¢ — 7 is positive, the area between the
glide resistance diagram and the horizontal line corresponding to the applied stress
is the energy dissipated when the dislocation moves at constant stress; where the
driving force is negative, the area between these two lines is the energy to be supplied
from thermal fluctuations if the dislocation is to move at constant stress. The
restriction proscribed by the Second Law takes on a direct physical meaning: the
energy taken out of the heat reservoir during activation cannot exceed that put into
the heat reservoir through dissipation, in the average. Exactly this inequality is
expressed in eq. [22h]: ¢ > 7s10r.

We will retain the convention [41f], with the work term [41d]), and call the activa-
tion energy at prescribed 7" and o the “‘activation free enthalpy” or ‘“Gibbs free
energy of activation”, AG, for two reasons. First, the subtleties as to which work
terms should be included are immaterial when, as is usual, all work terms except
one are negligible. Second, the use of the name ‘‘frec enthalpy’ emphasizes the fact
that the quantity G, with or without other work terms, is a state function. ’

In Fig. 41-2, we have plotted all three representations of the “obstacle”
properties, in correlated fashion, versus the glide area: (a) the line glide
resistance 7y v, €xactly as in Figs. 41-1a and b; (b) its integral, the (Helm-

bTuine

FiG. 41-2. The glide resistance diagram and its relation to the F-a and the G-a
diagrams,
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holtz) free energy F; and (c) the free enthalpy (or Gibbs free energy) G,
obtained from F by subtracting a term proportional to a. This last diagram
may be viewed as an inclined plane, with obstructions, down which a ball is
made to roll in quasi-static fashion (i.e. without inertia effects). Thermal
activation must help it get from the bottom of a “valley” to the top of the
“hill”’. Apart from this obvious analogy, the diagram is not very useful, since
it would have to be redrawn with a different “slant” for every new value of
the stress. In the free energy diagram, Fig. 41-2b, the stable and unstable
equilibrium positions have the same slope, though a different one for each
stress; this is again less convenient than the glide resistance diagram, Fig.
41-2a, where different stresses merely correspond to different horizontal levels,
ob. Tt is for this reason that we prefer to use the glide resistance diagram for
most applications. Sometimes, it is also the one most directly derived although,
in other cases, it is itself obtained by differentiation of a free energy diagram.

Tune

"PROFILE “

b-Aa

FiG. 41-3. The sheared glide-resistance diagram, now a diagram of the glide
resistance against activation area Aa (not total area a) times b.

The appearance of Ag, rather than of ag and ay, separately, in the expres-
sions for activation work [41d] and activation energy [41g] suggests that the
glide resistance diagram, Fig. 41-2a, might be simplified even further by a
shear parallel to the g-axis so that the abscissa becomes Aa. This is done in.
Fig. 41-3 for one “obstacle” or other glide resistance unit. The resulting
diagram may be called the glide resistance profile; it is the basic material
property on which thermal activation theory rests. In principle, this sheared
profile can be derived from experimental measurements; the unsheared
obstacle shape cannot.

Only the resistive part of the glide resistance diagram, Fig. 41-2a, has been used
for the profile of Fig. 41-3; negative glide resistances do not enter. activation pro-
blems (except in reverse glide, sec. 45). The profile would, in fact, be exactly the
same, if the dislocation encountered the region of negative glide resistance first,
and the region of positive resistance second; that is if the obstacle were attractive
rather than repulsive (Fig. 25-2).

One quantity often used to characterize an obstacle or other glide resistance
unit, namely the total free energy necessary to overcome the resistive part,
without the aid of external work, is

4
F, = AG(0) = b f Aa dr . [41h]
0
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It is the total area under the positive part of a “unit” in the glide resistance
diagram, or the total height of a “hill”” (from the approaching side) in a free
energy diagram (Fig. 41-2).

The net free energy associated with one “obstacle” in both its regions of
positive and (if any) of negative glide resistance is in the free energy stored,
Fsror, introduced in eq. [22g]; for generality, it was left finite in Fig. 41-2.

Activation Enthalpy and Activation Entropy

In general, the total activation free energy F,, and the glide resistance, will
depend on temperature in some unknown way schematically shown in Fig.
41-4a. The negative slope in this diagram may be called the fotal activation
entropy

S, = — dF, [41i]
: dr
and the intercept of the tangent on the ordinate is the total activation energy
proper: '

U, =F,+ TS, [41j]
For thermal activation at constant stress, we may similarly define the
activation entropy (Fig. 41-4b)

As = — 986 [41K]
oT |e
and

AH = AU — AW = AG + TAS. [41€]

This is the activation enthalpy, the quantity usually meant when one simply
refers to an “activation energy”. As AG, it should, in principle, contain all
work terms, not just the one deemed most important in eq. [41d].
The usefulness of AH in rate theory stems from the fact that it exactly
equals the derivative
_ 9(_AGJkT)
o(1/kT)
even when AG depends on temperature, as can be easily verified by use of
egs. [41k] and [41£].
The curvature in a plot of AG/kT versus 1/kT at constant stress then is
_r 0AS
oT |

[41m]

a

il 41
T |o [41n]

In principle, this provides a means of determining the activation entropy by
integration (L1, 1965; ARSENAULT, 1971):

JAH dT’
T’ |s

AS(o,T) = AS(a,0) + f [410]
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FO

Ust _—slope -5,

(a)
T
AG
(6 =const)
AH _—slope-45
’ 4 (b)
T

Fic. 41-4. The dependence of the total free energy of activation (a) and of the
activation free enthalpy at a given stress (b) on temperature. The slope of the
diagram is the (total) activation entropy.
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FiG. 41-5. The dependence of the shear modulus on temperature for aluminum
(after SutTON, 1953). If 1° is obtained by extrapolating from a finite temperature T
to absolute zero, the result depends mildly on the choice of T as shown.
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The integral is hard to evaluate in practice when all the curvature in Fig. 41-4
or in the Arrhenius plot is concentrated at low temperatures, as Fig. 41-5
would suggest when the temperature dependence of the elastic constants is
responsible for the entropy (JONAS and LuToN, 1971a,b; JoNas et al., 1972).

The first term in eq. [410], the entropy at zero temperature, is not necessarily Zero
(L1, 1965). It may then depend on stress, and the complete formula would be

-4 T
‘ oaS JAH| 4T’ '
AS(o, T) = AS(0,0 o o ool ¢ ,

(e, T) = AS( )+J s +f i | T [410']

: 0 0

or
o T
aAs| ., oAH| dT’ -
AS(a, T)= AS(0, 0) +f 30_"1(10 + J--GT oo T [4107]
0 0

depending on whether it is easier to extrapolate to zero temperature or to zero
stress. Note that the stress dependence of the entropy is identical to the temperature
dependence of the apparent activation area (egs. [41k], [43g]. .

Any calculation of an element glide resistance is usually based on a continuum
approximation; that is, on an assumption that a change in some microscopic para-
meters (such as in the number of atomic bonds between different atoms) may be
represented by a macroscopic material property (such as the interface free energy,
or *‘surface tension””). In many cases, specifically those involving internal stresses or
self stresses, the material property of importance is the shear modulus; in others,
such as the example given above, it is some surface tension; in others it may be the
stacking fault energy.

All these material properties depend, albeit weakly, on temperature. The assump-
tion, also usually made, that the temperature dependence of the microscopic pro-
perty “‘glide resistance” is the same as that of the macroscopic property ‘‘shear
modulus” is a more stringent one. For example, it implicitly asserts that only the
long-wavelength limit of the phonon spectrum enters; local changes of vibrational
frequency at dislocation cores, jogs, or kinks, or at surface steps left by cutting, are
ignored. Once this assumption is made, the integral of this glide resistance over some
glide area, evaluated using the shear modulus for a given temperature, is precisely
the free energy for this temperature. For one entire obstacle, for example, we would
have

F{T) cc w(T) b*(T). [41p]

(The temperature dependence of b is often negligible, but, in principle, it must be
included as was pointed out by Gisss, 1965.)

A more realistic impression of these temperature effects may be gleaned from Fig.
41-5, in which we have reproduced the actual temperature dependence of the shear
modulus g (the precise combination of elastic constants defined in Table 2-I) for
aluminumj it is weak and, to a good approximation, linear over a wide temperature
range (Jonas et al., 1972). If the free energy were really proportional to x (eq. [41p)),
the internal energy of activation U, would be essentially temperature independent
and proportional to u°, the value of the shear modulus obtained by extrapolation to
zero temperature (Fig. 41-5). Clearly the value of this extrapolated modulus depends
on the point on the curve from which the extrapolation is made; this extrapolated
value is plotted as p° on Fig. 41-5. It does not vary much at higher temperatures.
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From this point of view, a calculation of U, rather than F,, or equivalently of the
glide resistance at zero temperature (but without zero-point effects), would be based
on fewer assumptions; it would leave room for activation entropies other than that
due to the temperature dependence of the macroscopic shear modulus, surface free
energy, etc. In practice, however, the material properties at room temperature are
usually inserted, and so room temperature is used as a reference state. We continue
the practice of defining the glide resistance as derivatives of the free energy (eq.
[22e]), in part because of difficulties encountered with glide resistance diagrams that
stem from two distinct mechanisms (sec. 43).

42. ACTIVATION RATES

In the last section, we have discussed the probability py of fluctuations. The
quantity of interest for the Kinetics of dislocation glide is, however, the rate
P, at which such fluctuations occur. It is given by the product of py with a
Sfrequency factor; its magnitude will be discussed in this section. :

F1G. 42-1.i A schematic representation of contours of constant free enthalpy, G for
a two-dimensional configuration space. S represents the ground state, U the
activated state. Four hypothetical reaction paths are illustrated.

The problem is complicated by the fact that a large number of different
paths may be available for the fluctuation to occur. The sequence of states
is then not described by a single coordinate like a in Fig. 41-2. Figure 42-1
illustrates the case in which there are two degrees of freedom. The free
enthalpy G, described by a single curve as a function of a in Fig. 41-2c, is now
described by contour lines, and the maximum in G at the unstable equilibrium
point U has turned into a saddle point. This point U and the two stable
equilibrium points S and S’ are the only points at which the whole body is in
equilibrium at the given stress. The free enthalpy G at all other points in Fig.
42-1 is calculated on the assumption that the body is in equilibrium with
respect to all degrees of freedom except the two that are especially plotted in
the figure, and with applied stresses and a temperature bath. (In this sense,
G is not quite a complete free enthalpy of the body.)

The one-dimensional diagram in Fig. 41-2c may now be looked upon as a
section of the two-dimensional diagram in Fig. 42-1 along the (generally
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“curved) reaction coordinate; for example, one of the lines drawn in Fig. 42-1.
The difference AG in the free enthalpy of the ground state S and the activated
state U is independent of the reaction path, it is a “static’” equilibrium pro-
perty; but the rates of transfer across the saddle point may be different for
the different paths. .

Two approaches are commonly used to calculate, or rather estimate,

activation rates. In kinetic models, the reaction coordinate is assumed to be
known. The activation rate then follows from the attempt frequency, i.e. the
frequency of vibration in the ground state in the direction of the reaction

coordinate, multiplied by the chance of success given by the Boltzmann term
pg. The difficulty lies in the determination of the reaction coordinate. It is
illustrated in Fig. 42-1 by plotting four different paths, each one of which has
some phenomenological plausibility, and which generally do not coincide.
They leave the ground state: (1) in the direction parallel to the reaction co-
ordinate in the saddle point (where it is well defined); (2) in the direction of
the “lowest mode”’; (3) in the direction of “‘steepest ascent”; and finally (4) in
the direction heading straight for the new stable equilibrium point S'.

" An alternative approach is provided by the statistical theory of fluctuations
(also called transition state theory or “absolute rate theory™). It avoids the
difficulty of identifying the actual reaction path by considering all paths. In
a diagram like Fig. 42-1, all states on the line (dashed in the figure) that
separates the initial and final states are compared with all states in the half-
space to the left of this line. The fact that these two regions have different
dimensions, and thus a different number of degrees of freedom for vibrations,
leads to a transition rate. In general, the theory means to consider all degrees
of freedom of the system; Fig. 42-1 would then have to be replaced by a
multidimensional configuration space, in which the potential energy is defined
at every point, but the free enthalpy only follows from the proper averaging
procedure. For practical applications, the hyperspace is narrowed down again
to only as many dimensions as are considered relevant and noninteracting
with the rest. In this matter of judgment lies one of the difficulties of the
theory, the other one being that a harmonic approximation must be made to
obtain any usable results.

We shall summarize some results of both the statistical and the kinetic
approaches in this section, but will first outline various definitions and order-
of-magnitude estimates. For background reading, we recommend the treat-
ment of the kinetic and statistical approaches to chemical reactions by
HinsHELWOOD (1940, chap. 9) and to solid state diffusion by SEEGER (1955a,
sec. 12), as well as the far-reaching first paper on absolute reaction rates by
PorLAaNYI and WIGNER (1928).

Frequency Factors and Activation Entropies

The net rate P, of thermal release from a region of negative driving force
(see sec. 33) is, in principle, the result of two competing processes: the rate
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of activation from the stable to the unstable state (e.g. “S” and “U” in Fig.
41-1), and the rate of activation in the reverse direction, from a newly reached
stable state back to. the unstable state. In sec. 45, we will discuss cases where

both rates are important and shall call them P, and P,. Here, we concentrate
on the rate of thermal activation in the forward direction and call it P,.

This rate of activation is the product of a frequency factor and a Boltzmann
Jactor, together called an Arrhenius term. Depending on whether a description
in terms of the free enthalpy or of the enthalpy is desired, it may be written
as:

P, = vgexp {_Iég} ‘ [42a]
or as
. AH\.
P, = vy exp (_?]—") [42b]

Here we have introduced effective frequency factors with subscripts that
indicate the equation in which they are used. The two frequency factors may
be formally related to each other by using eq. [41£]: -

vy = vg eXp A7c§ [42c]

From a mechanistic point of view, vg or vy might, for a first estimate, be
related to one of two extreme frequencies: either the “atomic” frequency w,
(eq. [31f]) or (for discrete obstacles) the dislocation ground frequency (Fig.
42-2a),

b
Vo = wy —. 42d
AdL [42d]
In most practical cases, these two frequencies are orders of magnitude apart.
Better estimates are therefore needed; they will be sketched below and

i,

FiG. 42-2. (a) A fluctuation with wavelength 4/,. (b) A fluctuation of shorter
wavelength.
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generally give values for v or vy that are between these two limits; that is:
Vo € vg € wa. [42¢]

The meaning of the limits may be seen as follows. The value w, corresponds
to the frequency of uncorrelated atomic motions. The dislocation, however,
through its line tension, provides some correlation between the atomic
motions of interest: their wavelength should thus be longer. On the other
hand, a wavelength longer than 4/, would correspond to a correlated over-
coming of many obstacles at the same time, which is not necessary. Thus, eq.
[42d] should give a lower limit for discrete obstacles. ‘

A mechanistic estimate of a form similar to eq. [42d] is due to FRIEDEL
(1956, p. 47, or 1964, p. 66) who derived it via a classical treatment of the
lowest natural frequency of a taut string (the dislocation) of length /., mass
pb? per unit length, and line tension pb®. His result:

VFRIEDEL — o [427]

/

was rationalized as follows. Suppose (Fig. 42-2b) a short length of dislocation
around the obstacle vibrated away from the equilibrium position (solid line).
The rest of the dislocation segment would then immediately tend to reverse
the non-equilibrium curvatures at the point of juncture—unless the whole
dislocation segment ‘“knew’ about the activation event. The frequency in
eq. [42f] is just the inverse of the time necessary to propagate a sound wave
along this dislocation segment.

Further consideration of the problem (GRANATO et al., 1964) shows that
FRIEDEL’s argument is not dynamic enough. One may say that not only one
pulse travels along the dislocation segment during an activation event; many
do, and they interfere with each other. Treatments in terms of standing waves,
which we shall summarize below, then show that the “effective”” wavelength
is indeed much shorter than I, and is a property of the obstacle and the
dislocation line tension, but not of the obstacle spacing (unless it is especially
small).

The result obtained by GRANATO et al. (1964), and discussed further below
is:

v ~ 5 w,C (discrete obstacles) (42g]

where C is the normalized obstacle stiffness
C = W) = Ld_K
d(y/b)  w'bdy
The stiffness of the obstacles (that is, the slope dK/dy of its force-distance

curve) enters because this determines the local vibration frequencies of a
dislocation segment at and near the obstacle. Unless the forcc-distance curve

[42h]
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is linear, the stiffness depends on the applied force, i.e. on the applied stress
times the effective obstacle spacing. The frequency v; may, therefore, be a
weak function of stress and structure.

The order of magnitude of v; may be estimated by noting that

0.01 < K/u'b? < 0.5

for discrete obstacles sufficiently strong to be interesting, yet not so strong
that Orowan looping occurs (eq. [25i]); and that y/b varies between about 1
for the weak obstacles (substitutional solute atoms, for example) and about
10 for obstacles that are stronger (e.g. Guinier-Preston zones) yet which are
still sufficiently small that thermal activation can help in overcoming them.
It follows that

1 el [42i]
100 " 10
and therefore that
Ba o, o @a
1000 ~ 7~ 100 .
[425]
or typically ve S 1011571,
i

We shall use this value for estimates in subsequent sections.

At low temperatures some frequencies cease to be available in the lattice
spectrum. As a rough estimate, one may say that the ‘effective Debye
temperature” T,, below which such effects must be considered, is given by

kT < kT, = hvg (quantum effects). [42k]

By virtue of the estimate [42j], this temperature is less than one hundredth
of the Debye temperature and thus, in most cases, too low to be of interest
for plastic flow problems. The various considerations necessary at those low
temperatures have been reviewed by ALEFELD (1964) and SCHOECK (1974).

It is appropriate at this point to introduce a word of caution. The Boltz-
mann probability expression, and the Arrhenius rate equations that are based
on it (e.g. eq. [42a]) are valid only if certain conditions are met. First, the
probability of a fluctuation exceeding AG in magnitude is only described by a
Boltzmann distribution provided AG > kT. When AG =~ kT, the velocity of
a dislocation is determined by dynamic effects (Chapter 3), not by rates of
thermal release from obstacles. At the other extreme, when AG/KT is very
large, backward jumps (to be discussed in sec. 45) may be important, and
the release rate is no longer given by a single Arrhenius term. Finally, there
are statistical restrictions. The total number of dislocation segments in a
position to be activated, or the total number of activated events that a single
segment undergoes, must be sufficiently large that the statistical averaging
implicit in the Arrhenius equations has proper significance.
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The difference between the frequency factors vs and vy was meant, in the above
discussion (eqs. [42c], [41k]), to stem from the temperature dependence of AG,
which is a property of the individual obstacles; one may call AS in eq. [42c] the
““obstacle entropy”. Some authors, following GRANATO e al. (1964), consider the
vibrations of the free dislocation segment to lead to another entropy term, so that
one could write

vo = s, exp 2501 | [42¢]
or
o = wpexp 250 [42m]
where
AS = ASosstacLE [42n]

as before. However, the value of ASps depends, according to eq. [42€], on the choice
of v,. The value [42d] might be logical, since ASpis would then always be positive,
but others have been proposed (VINEYARD, 1957). Furthermore, ASpis would have
to depend on [, if indeed vs does not; the introduction of a structure parameter
into an equatijon such as [42i] at two places in a manner that it exactly cancels out
again, is clearly confusing. For these reasons, we continue to regard the activation
entropy to be a property of the obstacle only (eq. [42]]) and will not use v, as a
frequency factor. .

It is true that ASpis should, in principle, be measurable through its temperature
derivative (eq. [410]). As the above discussion shows, this would require going to
temperatures below hvg/k: at all useful temperatures, ASpis is thus constant with
temperature.

Transition State Theory

The transition state theory was developed for crystalline solids—although without
explicit consideration of applied stresses—by VINEYARD (1957). It considers con-
figuration space divided into two halves and derives the partition function of all
states in the half that contains the initial stable state by assuming them to be reached
by vibrations around this stable state in a harmonic potential. Similarly, it derives
the partition function of all unstable states by assuming them to be harmonic
vibrations around the state ‘U’ (Fig. 42-1) in unstable static equilibrium; this is of
course, not possible in any direction in which the curvature of the potential is
negative—and there must be (at least) one of these to make the state unstable.

As discussed in the introduction to this section, the transition state theory con-
siders, in principle, all degrees of freedom of the system, but, in practice, only those
assumed relevant according to a particular model. GRANATO et al. (1964) assumed
that the relevant degrees of freedom were those associated with the vibrations of the
two dislocation segments on either side of a (discrete) ‘‘pinning point”. If these
vibrations have N + 1 independent modes in the ““stable” position of the dislocation,
they have N in the “‘unstable” position. Figure 42-1 may be looked upon as a iwo-
dimensional representation of the N 4 1 degrees of freedom. The free enthalpy G

“plotted in it is then associated with all other degrees of freedom of the system
(which are still many more than N), but does not contain any ‘‘entropy” terms
associated with the vibration of the dislocation ‘‘string”, in accordance with the
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terminology we have previously adopted. In this terminology, the result of GRANATO
et al. (1964) is that the (forward) activation rate is

II =
0
N
I~
1
where the v's are the frequencies of the harmonic oscillators around the stable (+5)
and unstable (+Y) states, respectively; the index 0 has been chosen for the mode in
the stable state that has no equivalent in the unstable state.

Dividing eq. {420] through by P,, one sees that the transmission rate P, plays the
role of a *‘frequency” in the direction of the reaction coordinate in the point U.
The right-hand side of the equation is then the ratio of two complete partition
functions, which must be 1, since both states are supposed to be in equilibrium.

The ratio of products of frequencies in eq. [420] would be easy to evaluate if the
terms in the numerator and denominator canceled in a pairwise manner, at least

approximately. For example, if all frequencies with the same mode number i were
the same in the S and the U state, one would be left with

P, =

éxp [ 2](3 ] [420]

vg = ¥, (false assumption) [42p]

which is about twice the lowest possible frequency », (eq. [42d)).

The evaluation by GRANATO et al. (1964) showed, however, that this is not even
approximately true for discrete obstacles. While the terms with equal mode number
are similar at the high-frequency end of the spectrum, the frequency of a low-lying
mode in the stable state is approximately equal to that in the next higher mode in the
unstable state. By an elegant graphical evaluation, GRANATO et al. estimated which
of the intermediate frequencies in the stable state is essentially uncanceled by one
in the unstable state. Their result, quoted earlier (eq. [42g]), is

v ~ 3% 0 C [42q]

where C is a normalized stiffness, defined by eq. [42h].

The most noteworthy feature of this result is that the effective frequency factor
does not depend on the length /. of the free dislocation segments. One can only con-
clude that the number N of degrees of freedom that were considered relevant to the
problem was already too large. The fact that v, of eq. [42d] depends on /, is a pro-
perty of the Friedel model, which considers dislocation segments stretched between
rigid pinning points. The statistical-mechanical treatment emphasizes that the com-
pliance of the obstacle itself is of vital importance. We shall come back to this point
in our discussion of kinetic fluctuation models.

Some treatments of the transition state theory, we must note for completeness,
retain a factor k7/h in the frequency factor, following GLASSTONE ef al. (1941). Both
the appearance of an explicit temperature dependence and of Planck’s constant are
fortuitous since they fall out in more complete treatments for solid state applica-
tions (see, for example, SEEGER, 1955a, p. 412; VINEYARD, 1957; and even PoLANYI
and WIGNER, 1928). '

Kinetic Fluctuation Models

Instead of looking at the stable and unstable states as being in equilibrium with
respect to all their coordinates, as in the transition state theory, one may look at the
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fluctuation by the amount AG defined in eq. [42a] as the result of a kinetic process,
in which the Boltzmann term gives the probability of success and the frequency
factor gives the ‘‘attempt frequency”.

For a very simple model which, unrealistic though it is, may be used for order-of-
magnitude estimates, consider a piece of straight dislocation of length .# in front of
a linear barrier, with an equilibrium position y,, at the applied stress o. Linearize the
force—distance diagram of the barrier in the neighborhood of this position so that

(r — L = wbC(y — y,) [42r]

where C is the normalized stiffness defined in eq. [42h). Set the drag coefficient B to
zero for the small excursions considered (this will be discussed further below), and
set the mass per unit length of the dislocation to the value [31n]. Then the equation
of motion for this piece of dislocation becomes

’

1% w" _y + wbC(y — y,) = 0. [42s]
A
An appropriate solution is
y = sin 2mit
with the frequency
v = =2 /2Chj 2. {42t}
27

Since, for a linear barrier, the resisting force and thus the stiffness C is itself pro-
portional to # (eq. [25d]), one may write eq. [42t] more appropriately

_ “a, d(reLem/n’) ’
vt [2 Sl p2r]

* A real piece of dislocation would not remain straight but vibrate in various modes,
depending in some measure on the boundary conditions to be discussed below.
However, these vibrations do not tend to carry the piece as a whole forward, and for
this reason the frequency [42t] may be taken to be a mode “in the direction of the
reaction coordinate”.

. To obtain an estimate for the attempt frequency v to be inserted into eq. [42a],
let us consider two extreme examples. The first concerns a long piece of dislocation
attempting the nucleation of a pair of kinks of atomic height (Fig. 42-3). If the
interaction between these kinks is neglected for the long piece of dislocation, eq.
[42t] already gives the attempt frequency, except for one complication, which was
pointed out by CELLI et al. (1963) and, more generally, already by PoLaNYI and
WIGNER (1928): the nucleated kink pair has fwo degrees of freedom that do not
qualify as vibration states. One of these consists of their spreading as envisaged in
the nucleation process; the other of their lateral translation as a rigid body.

Using the transition state theory for this aspect (LoTHE and HIrRTH, 1959), we

_Fi1o. 42-3. Expansion (—) versus translation (- - -) of a critical double kink

(=)
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would have to replace one of the frequencies in the denominator of eq. [420] by a
translational term such as the thermal velocity

UTRANS = A/ kT [42u]

477'MKINK

divided by the length of the dislocation, where My nx is the mass of one kink, which
is Uxink/v%s (eq. [31m]). Furthermore, the assumption is made that the additional
uncanceled frequency in the numerator of eq. [420] is approximately equal to
[42t"). This gives, per length b,

(linear barriers). [42v]

YG

- WA 'A/ZUKINK'd(TELEM/“)
wv2a N KT d0jb)

In this case, the effective frequency depends mildly on temperature, in addition
to depending possibly on stress through the stiffness term. An order-of-magnitude
estimate may be obtained by setting F, ~ 0.4 eV, #grem ~ #’/100, and /b~ %,
this gives, for room temperature, again the value w,/100 (eq. [42g)).

Fic. 42-4. A local forward fluctuation of a dislocation segment at an obstacle is
opposed by the line tension of the dislocation itself.

F16. 42-5. The activated segment has a length equal to the wavelength of a natural
frequency of the dislocation line.

The other application is to a shorter piece of dislocation in front of a discrete
obstacle. Here it becomes of paramount importance that the piece of dislocation is
in fact connected to other parts of the dislocation. If they vibrated only to the extent
enforced by the piece we are considering, the situation illustrated in Fig. 42-4 would
develop; the substantial line tension forces from the rest of the dislocation would
have to be incorporated into the equation of motion [42r] and would effectively
prevent all independent vibrations of the element. One must instead consider the
element vibrations to be part of a standing-wave spectrum of the whole dislocation
segment. The interaction would vanish, if the length # of the piece were just equal
to one wavelength of the standing wave (Fig. 42-5)—and its vibration frequency
equalled that of the piece:

» .
g:A{ [42w]
Inserting this value into eq. [42t) and solving for », we find (Kocks and LickE,
~ unpublished)
1
ve X 27 w,C. [42x]

. This is within a factor 2 of the calculation by GRANATO et al. (1964), eq. [42q].
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Finally, we need to justify the neglect of a damping term B.Zj in the equation of
motion [42r]. This is justified so long as the dislocation is not overdamped for the
vibrations under consideration. This is so when the square of the coefficient of j
is smaller than 4 times the coefficient of j, tlmes the coefficient of y. With the value
[31q] for B and eq. [42t], this means

kT  2mv
5 < ~ f42y]

which is easily fulfilled with the estimate [42g].

43. THE STRESS DEPENDENCE OF THERMAL ACTIVATION

When the strain rate at a given stress and temperéture is governed by ther-
mal release (eq. [33ii]), and the net rate of release may be approximated by

the rate of forward activation P, (eq. [42a]), the rate equation reads

AG
Y = Yovg EXp — T [43a]

The dependence of strain rate on stress at a given temperature may be
expressed as

dlny =<?1nyn +31nvG 1 0AG [43b]
do |T.r da |T.r 90 |1+ kT 8o |Tr
or, with the definition [34r],
mEc?ln-y _dlny, dlnvg _1_3AG . M3
olnoirr dino|r: Jdlno Tt kT'dlno T,r

The index = at the partial differentials indicates that the entire obstacle
structure is assumed constant in the variation.

We have seen in secs. 32 and 33 that the contribution to m from the stress
dependence of y,, through the mobile dislocation density, is usually between
1 and 3; and in sec. 42 that the contribution to m from the stress dependence
of vg, through the obstacle stiffness, may be positive or negative, but also
usually of order 1. The stress dependence of the activation energy AG may,
however, be considerably larger, to the point that the first two terms in
eqs. [43b] and [43c] can rightly be neglected. In that case, experimentally
measured relations between strain rate and stress can give important informa-
tion about AG, and thus about the nature of the rate- controllmg obstacle.
This case will be analyzed here.

When, instead, the term involving AG in eq. [43c] is small compared to the
others, the value of m reflects mainly the way in which the mobile dislocation
density and frequency factor vary with stress. The appropriate way of handling
experimental data for these two situations is discussed in Chapter 6.
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Activation Volume and Apparent Activation Area

In applications of thermal activation analysis outside plasticity, a depen-
dence of the activation energy on a particular component of applied stress—
the hydrostatic pressure, p—is frequently encountered. One commonly
describes this behavior by the derivative

Ay =29 [43d)

called the activation volume. The effect on the activation energy of pressures
comparable with that of the atmosphere is usually very small.

Similarly, the activation energy for plastic flow may depend on hydrostatic
pressure, although again the effect is usually small. For example, the number
1 of point defects with which the dislocation might interact, or their stress
¢ field, might depend on pressure, as might the width of the dislocation core.
Such an effect would be properly described by the activation volume [43d].

Tune

0'0')\
000
CEOKXEINNN
SN

AvaA'H'e'

AV(p,-py)

bAa

k F1G. 43-1. A change of pressure from py to p, will, in general, change the obstacle
profile. When p, and p, are comparable with atmospheric pressure, the effect is
3 negligible.

i One may think of the influence of hydrostatic pressure as one on the glide resis-
| tance diagram. Figure 43-1 shows two profiles for different pressures and the two
| activation energies as differently shaded areas. Note that, since the glide resistance
‘ was defined as a derivative of the free energy F (eq. [22e]), the present interpretation
1 amounts to including a “‘work term” in AF, not in AW,

I The width of the dislocation core may well depend on other components of stress,
Iy

|

{

|

|

[

\

at too. As an example, the conversion of a screw dislocation core in bec crystals from
the rest configuration of three-fold symmetry into the ribbon-like configuration
L necessary for glide must depend on the entire stress tensor. The activation energy
i for glide may, thus, in general depend on all components of stress. The derivatives

JAG

}‘.i' aa” T, other g
|

‘ could all be different from zero.
‘ » The shear stress in glide plane and glide direction here simply called ¢ (eq. [22d])
i is of special importance. In addition to its possible influence on core structures and
other atomic configurations, it provides the very driving force for the glide process
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under consideration. Its effect on the activation energy is not small and is our prime
concern. In particular, the activation energy will vanish as ¢ approaches 4, ne.
It would obviously be convenient to have a general name and symbol for stress
derivatives of the activation energy. In analogy to eq. [43d], and because thcy have
the dimensions of volume, it was common for some time to call them all “‘activation
volume”, in particular also — éAG/de. This terminology has been felt to be con-
fusing (if not ‘“‘wrong’’) by many recent authors. The now more common term
‘“activation area (times b)” is, however, at least as confusing: it has a very specific
geometric meaning (eq. [41¢€]), which sometimes equals — dAG/do and sometimes
not (eq. [43h]). The term is also applied to — dAH/de which is, in general, different

“again (eqs. [43p], [43r]). The worst feature of these geometrically inspired names is

that their correspondence to —38AG/ds relies on a model; but — 8AG/dc is
measurable, at least in principle.
One way out of this problem is to define a set of ““activation strains” (or “‘activa-
tion strain volumes” VAe,,, as L1 et al., 1973)
0AG JAG ‘
AEU = L{ } [436]
The activation volume of eq. [43d] is then simply
AV = VAey/3 [43¢']

r doy

doyy

and the derivative of the activation energy with respect to the shear stress o could
be described by
JAG

VAy=2VAe;; = —
do

[43e"]

T
Note, however, that Ay is the quantity of interest, not Ay, where V is the volume
of the entire body. '

Although this terminology has certain attractions, we will not use it because of
its unfamiliarity (and because we could not find an acceptable name for VAy). We
shall use an “‘apparent activation area’ Aa’ to describe the dependence of AG on the

shear stress ¢, as outlined below, and will not consider dependences on other stress
components.

The (true) activation area was defined in eq. [41¢] as
Aa = aU - as. [43f]

It has a straightforward geometric interpretation: it is the area swept out by
a dislocation segment between the equilibrium configurations belonging to
the stable and unstable positions, as shown in Fig. 41-1.

We now define the apparent activation area as

_10AG

Ad = —_
b do

[43g]

T,r

It is the stress dependence of the activation energy, and is equal to Aa only
under special circumstances. The two can be related by noting (eq. [41g]) that

fLing
AG = j bAa dry g

a
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and thus that

4LINE

™ BA
Ad = Aa — f 229 e [43h]
a0 |,

The second term in this equation may be viewed as the dependence of the
glide resistance profile itself on o, such as, in Fig. 43-1, it depends on pressure.
But here only the combined effect can be measured. As shown later, this term
amounts to 1Aa for the case of discrete obstacles, and thus is far from
negligible.

Finally, we note that the experimentally measurable quantity, which might
be termed the operational activation area, is

kT dlnyl _ mkT

il —. 43i
b Jdo |T bo [43i]

Similarly the true activation work
AW = obAa [43i]

is the actual work done by the applied stress during a thermally activated
event. The apparent activation work

IAG
dlnojr

AW’ = obAd' = —

[43k]

is not necessarily equal to AW (for randomly distributed discrete obstacles,
for instance, AW’ = $AW).

The best that can be achieved from experiment, without invoking a model,
is a measurement of AW’ as a function of o (or AG as a function of o). Figure
43-2(a) schematically shows such a curve. With suitable model assumptions
it can be translated into a = g—-Aa diagram (Fig. 43-2(b)).

Profile Dependent on Temperature

There are two difficulties with an experimental determination of Aa’(s) or
AG(o) diagrams. The first has already been mentioned and concerns the
possible stress dependence of the pre-exponential factors. It occurs again, if
one attempts to determine AG(o) as (eq. [43a])

AG = kT In (yovg/7), : [432]

e.g. by measurement of the stress necessary to achieve different strain rates
at the same temperature: the stress dependence of yv; would have to be
known to obtain any information about AG(e).
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T plane

AG
(a)

Aw’

bAa’

TLine (o}

(b}

bAalo}

FIG. 43-2. Experiments allow the “apparent profile’” shown at (a) to be determined.
A model is needed to translate this into the obstacle profile shown at (b). Note that
the area AG is the same in both diagrams.

The second difficulty lies in the fact that the strain rate cannot in practice
be varied sufficiently to cover the entire range from ¢ ~ 0 to ¢ = ¥ at any
one temperature. Equation [43a’] suggests that then a determination of the
stress to achieve the same strain rate at different temperatures would give
AG(o) over the entire range (again assuming any stress dependence of the pre-
exponentials to have been taken care of). However, this is not necessarily
true, since the functional relation (Ag) and thus AG(e) may itself depend on
temperature as was discussed in sec. 41. ‘

This (very likely) possibility is sketched in Fig. 43-3a: the thin lines show
theoretical 7(Ag) curves for four different temperatures; the heavy lines
illustrate the range over which each curve might be measured by varying the
strain rate (assuming the connection between Aa’ and Aa is known); using
a single strain rate over a range of temperatures thus gives a distorted curve.
In the same way, Fig. 43-3b illustrates the situation in a AG(o) diagram, and
Fig. 43-3d in a AH(o) diagram. The latter may be thought of as the integral
of a modified line resistance diagram, Fig. 43-3c, in which the derivative of
the free energy (eq. [22¢]) has been replaced by a derivative of the internal
energy. Here, the effects of temperature on the resistance and on the Burgers
vector go in the same direction.

The explicit temperature dependence of = and AG may, in principle, be
determined by a more extensive thermal activation analysis, to be outlined
below. But it is usually more fruitful to assume, on theoretical grounds, some
temperature dependence, for example via the shear modulus. We shall treat
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‘[ Fi1G. 43-3. (a-d) If the obstacle profile depends on temperature, and the experi-
H ments at different temperatures (four, in these figures) are used to determine it, then
J four segments of four different obstacle profiles are obtained. If an explicit
A temperature dependence for the profile is known, or assumed, a single normalized
‘ profile can be derived. ’
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this case first. It permits an analysis even when the pre-exponential terms are,
in a certain manner, stress dependent and even when, as will be shown later
on, the flow stress is in part determined by an internal stress contribution.

Profile Scaled by Shear Modulus and Burgers Vector

The glide resistance may be assumed to be proportional to the shear
modulus, and the activation area proportional to the square of the Burgers
vector:

e € (T);  Aa o bX(T). [43€]

The proportionality to the modulus is obviously trre when the glide resistance
is due to some kind of internal stress or a longer-range dislocation property.
When it is due to the generation of some internal surface or of some length
of dislocation core or some area of stacking fault, the glide resistance is
instead proportional to the respective surface, core, or fault energy. It is often
assumed that the temperature dependence of these macroscopic properties is
similar to that of the shear modulus. In some cases, this may be reasonable,
in others it is certainly not; for example, when the glide resistance depends on
the difference in stacking fault energy in matrix and second phase in an alloy
hardened by coherent precipitates.

The assumption [43€] allows one to rewrite eq. [41g] to read (with 7 = 7y ng)

4

M
AG . Aa d T
pb* ) B2 p
oflp
where, as before # is the maximum value of 7 ,ne. If Aa/b? is assumed to be a

function /{'/p, and o/u at most, this implies

AG = pb*-g (f) [438']
p.

where g is any function of o/u. It immediately follows that

Aa’ = —b2 98 [43¢]
d(o/n) |

Equation [43£'], together with [43a], would suggest plotting a modified

Arrhenius diagram of 1ny vs. ub*/kT at constant of/p (Fig. 43-4). For the

slopes in this diagram, we have

dlny _ d In (y.vg)
H—pb3 kD)ol (—pb?IkT)

Lt (Z) [43m]

Thus even when the pre-exponential factors depend on stress and temperature,
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so long as they do so only through the reduced variable o/, the slope in
Fig. 43-4 is the function g. If indeed o/u is the only variable, the lines in this
diagram must be straight.

The dependence of the slope on o/x gives, by eq. [43£"], the apparent
activation area as a function of o/u. One can compare this to values derived
directly from eq. [43b] in the reduced form

diny| _ dIn (yovg)
Aol i)

When the first differential does not vanish, it can be determined by inserting
— dg/d(e/r) for Ad'/b>.

Iny

4 pbAa’

43n
T kT [43n]

ln(v.vr,){ NN ol
N

/slope-g(%)

ub?
KT

Fic. 43-4. The modified Arrhenius diagram, corrected for the temperature
dependence of u and b. Its slope gives the function g(o/u).

Fortunately, the analysis of experimental data is usually simplified by the
fact that either the stress dependence of the pre-exponentials or the explicit
temperature dependence of AG can be neglected. These cases will be discussed
in some detail in Chapter 6. In the following, we treat the case in which not
even the present assumptions [43€] are believed justified.

Stress Dependence of Activation Enthalpy and Entropy

We have seen that the stress dependence of the activation free enthalpy AG, which
is related to the activation area and is thus of physical interest, may sometimes be
hard to determine because of a stress dependence of the pre-exponential factors in
the rate equation. In such cases, one may want to resort to a determination of the
stress dependence of the activation enthalpy AH, which is free of these difficulties—
though it introduces others.

The activation enthalpy is, according to eq. [4lm], given by the temperature
derivative of the Boltzmann term. It thus can be obtained from the slope of an
Arrhenius plot (eq. [43a]), that is, from the equation

_ 91n (vov)
ot N a(_I/kT)

dlny
d(—1/kT)

+ AH, [430]

arT

provided that the temperature dependence of the pre-exponential factors is known
or negligible. This is usually true to a much better approximation than that their
stress dependence (eq. [43b)) is negligible; for example, vg may be proportional to
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1/4/T (eq. [42v)), in which case the first term on the right in eq. [430] is — kT2
and always negligible compared to AH.

The stress dependence of AH then follows from the stress dependence of the
Arrhenius slopes, and is related to the apparent activation area by (KOPPENAAL
and ARSENAULT, 1966)

— OAH = bAa’ — Taig [43p]

do |1, do |1,

from eq. [41€].

The stress dependence of the activation entropy AS thus becomes of interest.
We have seen in sec. 41 that, while the activation entropy itself may have non-
negligible values of a few k, its temperature dependence is usually negligible over
the range of temperatures investigated. As we shall show below, the stress dependence
may, under different circumstances, be very small or very large.

First, let us use one of the ‘“‘Maxwell relations” for plastic flow, which were listed

in extenso by L1 (1965):
_a( JAG
e/ T a 3T do

d0AS| _ 9 ( 0AG
do oT
The stress dependence of the activation entropy equals the temperature dependence
of the ““‘activation volume’’. Now, we express this in dimensionless form by separat-
ing the temperature dependence of b* from that of Aa’/b?, and by expanding the
latter to show the functional relations:

=z 43
=% {43q]

oT

) _ d(bAa’)

[ 4

HAS/k)
dlno

dlne
TalnT

_ obAa’ [dInd®  dIn(Aa’/b?)
r kT YdInT dlno

A__} [43q]
b2

The left-hand side is now the contribution to m from the activation entropy, the
factor on the right is the main component of m—that from AG.

The expression in braces contains two opposite contributions: the stress depend-
ence of the activation entropy may thus be positive or negative. The negative con-
tribution has as one factor any temperature dependence of the stress that does not
come from thermal activation (‘‘at constant Aa’/b*’"). For example, this term could
be d In p/d In T, which is typically about,0.1 and usually larger than d In $*/d In T,
typically about 0.02. But it is multiplied by a factor, which determines the entire
behavior of dAS/de, namely the slope of the (apparent) profile.

Figure 43-5 illustrates the meaning of the stress dependence of the activation
entropy. It shows two profiles for two different temperatures; the stresses are chosen
smaller for the higher temperature, but the apparent activation areas Aa’ are chosen

do t ]

baa’

FiG. 43-5. Diagram illustrating the stress dependence of the activation entropy.
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larger. The shape of the profile was chosen to illustrate the two extreme possibilities:
(A) when the profile has a vertical drop, the negative contribution to 6AS/de is
zero (eq. [43q]) and only the small positive one from the temperature dependence
of the Burgers vector remains; but (B) when the profile has a plateau, dAS/de can
have very large negative values.

For any short-range obstacle, the glide resistance decreases with distance by an
inverse second or third power, for example; (& In (4a’/6%)/@ In o)y is then approxi-
mately — 4 or — 4, and the two terms in braces in eq. [43q’] compensate each other
quite well.

In conclusion, the stress dependence of the activation entropy should be negligible
Jor all short-range obstacles, and then —(0AH/[do)r,, and bAa’ are approximately
equal (eq. [43p]). But for obstacles with ‘‘shoulders” or ‘‘plateaus”, one must

use (egs. [43p] and [43q])
dlne 43
celmT[sy | 41

_ 9MH
90

dinb® | 21In(Ad’/b?)
= bAa’ —_—
T,: ba{l dlnT+ dlno

This is especially important for two-stage profiles.

Two-stage Profiles

A particular obstacle profile may look like the curve shown in Fig. 43-6a.
It appears to consist of two stages: a long-range and a short-range one.
Similarly, its integral may have the two-stage appearance of Fig. 43-6b.

The profile, Fig. 43-6a, may have been derived theoretically as a super-
position of an “internal stress” field and a localized resistance—be they due
to the same physical obstacle such as a coherent precipitate, or to two different
obstacles such as parallel dislocations and solute atoms. The glide resistance
due to internal stress would have its own maximum value #,, so called because
it would be proportional to some shear modulus. In fact, any contribution
to the glide resistance that is proportional to p, such as Orowan looping
around incoherent inclusions, would qualify for =, in this sense, even if it
could not be measured as an “internal stress”.

The Figs. 43-6 may, on the other hand, have been obtained experimentally.
It would then be logical to hypothesize that two distinct mechanisms con-
tribute to this profile—and that the longer-range one would be proportional
to the shear modulus. If one suspected that the two mechanisms might be due
to different physical obstacles (such as forest dislocations and solute atoms),
one could try to vary their respective concentrations independently, in order
to decompose the observed “profile” into parts attributable to each sort of
obstacle. (We shall discuss a particular prescription for such a procedure in
sec. 44.) But when a single obstacle is responsible for the observations, the
diagrams of Figs. 43-6a and b are all that can be learned from experiment.
One may draw a 7,-level and a total free energy F,for the short-range
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Tune

>

Tp -~

Q

(b)

Tn

AG

(c)

FI1G. 43-6. (a—) In (a) and (b) a two-stage obstacle, having a short-range “peak”
and a long-range “1ail”. A plot of ¢ against AG has a well-defined asymptotic
value. A plot of o against AH does not (c).

mechanism into the plots to whatever accuracy may be warranted by the
observations.

Many authors (for example, SEEGER, 1957, 1958) introduce the notion of
an “internal stress” contribution r, and of an “effective stress” ¢ — 7,
(meaning ‘“‘effective” on the short-range mechanism) at an earlier stage, before
the evaluations that led to Fig. 43-6a or b. They may be misleading if 7, is
not accurately known—and is not necessary when the free enthalpy of the
short-range mechanism depends on temperature through the shear modulus.
This is because eq. [43£']

AG = ub3-g (i’ )
i
is not altered by the replacement of o by o — 7, except in the form of the
function g. The entire analysis presented in formulas [43£] through [43n] is
thus applicable, whether there is a distinct internal stress contribution or not.
It is this analysis that is here meant to have led to Figs. 43-6a and b in the
first place.
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The situation is, however, different when an analysis in terms of AH is attempted,
which is necessary when the short-range mechanism has an explicit temperature
dependence that cannot be described by that of the shear modulus. The difficulty
may be appreciated by writing the expression for AH for the ‘case in which the
temperature dependence is in fact that of the shear modulus (i.e. when the exercise
would not be necessary).

For this case, the free enthalpy is (eq. [43£])

AG = pb3-g (f)
n

AH = AG + TAS

and the enthalpy (eq. [41£])

follows from this with the activation entropy (eq. [41k])

_ G| _ bt delol) (o du
AS=—Zr =~ ~ar T e \ T e ar
or, with eq. [43£7],
dIn (b3 ding ,
- _ _ AW,
TAS dinT ¢ ~qmr?? [43s]

Parenthetically, this expression simplifies considerably when the temperature
dependence of b is neglected and (dAa/do), = 0 so that AW’ = AW (eq. [43h]);
then (SUREK, et al., 1973a),

A
dln B AF ~ —-F (special case) [43s']

AS = — ~
TaS dinT 10

where the order-of-magnitude estimate is based on eq. [431].
The activation enthalpy becomes, returning to the general case,

AW’ [43t]

3
AH — (1 _dln(ub ))'AG——dlnl‘~

dinT dinT

While AG refers to the ““top” of the glide resistance profile only, and may thus be
regarded as a property of the short-range obstacle so long as ¢ > r,, AH depends
on o, the entire applied stress, through AW’, Thus, AH increases indefinitely as ¢
decreases towards the =,-level (Fig. 43-6c). On the other hand, AG (Fig. 43-6b)
reaches a finite value at this level and ther becomes indefinite. This explains the
wide range of values quoted for AH in the case of work-hardened fcc crystals
(MEckKING, 1973).

If one wished to ascribe an ““effective’ activation enthalpy AH, to the short-range
mechanism only, one would have to define it as

dln(yb’))‘AG_dln;u

AW {43t}

A = _
H, (1 dinT dinT

In other words, one must know T,
As a corollary to eq. [43t’], one may then also define an “‘effective’ activation
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entropy (CONRAD and WIEDERSICH, 1960):
0AG
AS, = — ==

o [43t"]
) 0T | (omr

Since this procedure would eliminate the plateau from the glide resisiance profile, it
also eliminates the large negative stress dependence of the activation entropy (eq.
[43q°], Fig. 43-5): AS; would be approximately constant.

Note that this procedure depends on an accurate knowledge of 7,. It is of value
only when the temperature dependence of AG is severely different from that of the
i shear modulus (i.e. the lines in Fig. 43-7 are curved). (See also Gisss, 1964.)

[ Phenomenological Description of Glide Resistance Profiles

For rough estimates, obstacles have often been assumed to be box-shaped.
For such obstacles, Aa is obviously constant for 0 < ¢ < #, or, in terms of
the stress dependence of the free enthalpy of activation:

AG = F,- (1 - i:). [43u]
T
Although the flat top of this obstacle profile may be a realistic expression of

some core cut-off, real obstacles would usually have a tail in which = decreases
as some negative power of Aa:

1 A
o —— <
g <9
with [43v]
n>1 for short-range obstacles
and
n<l1 for long-range obstacles.

The distinction between long and short range has here been made according
«to whether the activation energy diverges at large Aa or not.

For short-range obstacles, which are especially sensitive to thermal activa-
tion, a useful phenomenological generalization of eq. [43u] is

AG = F{ 1 — (:),}q [43w]

‘v This equation still contains the physical parameters of prime interest, viz.

{ ‘ the maximum (plane) glide resistance # and the total free energy F, necessary
to overcome the obstacle without the aid of external work. The activation
energy AG decreases from F, to 0 as o is raised from 0 to 4, provided p and g
are both positive. '

T e e e T et - ~ T 27

" The appearance of two adjustable parameters, p and q, in a phenomenological
] relation may seem at first sight disturbing. However, it is quickly realized that p
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essentially describes the shape of the “‘tail” (o ~ 0), with (egs. [43g], [43v])
1

p=1——

whereas q describes the shape of the ‘‘top™ (¢ = 7). For example, it would be
1
=14
q + X
in a phenomenological glide resistance profile of the form

r = #(1 — [Aa]®). “3v’]

Furthermore, the possible range of values for p and g is limited by the require™
ment that the activation area increase continuously as ¢ decreases. Double differ-
entiation of eq. [43)4] with respect to ¢ shows that this means

0<p<l1; 1€q<2 [43w’]

or, in terms of the exponents in eqs. [43v] and [43v]:n > O, k = 1. (The upper limit
for q comes from the supposition that obstacles cannot have a sharp point.)

Figure 43-7 shows the profiles for some representative values of p and q. The
case p = } may stand for any value 0 < p < 1, the case @ = 3/2 for any value
1 <q <2. In fact, one may consider these values of the exponents to be a suffici-
ently accurate description for all cases and write (ONo, 1968)

- ,{1 - ( )’}”’. “3w]

L,

S
Q
~

y ' Q

-
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FIG. 43-7. “Short-range” profiles (F, < o) described by AG = F,.{1—o/#"}".
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FIG. 43-8. (a) A plot based on eq. [43w”}, showing deviations from linearity caused
by deviations in the obstacle shape from a norm of q = 2, p = }.
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Fi1G. 43-8. (b) Hypothetical experimental results showing the effect of an “‘internal
stress”’.

If this equation were exactly correct, one would obtain, with eq. [43a’], a straight
line in a plot of ¢*/2 vs. T%/3, This is shown in Fig. 43-8a in corrected variables
assuming again (eq. [43£7) that F, oc ub® and # o . When real observations show
curvatures on such a plot, and especially when they approach the coordinate axes
with vanishing or infinite slopes, immediate conclusions can be drawn as indicated
in the figure, concerning the real values of p and q for this case, i.e. the real shape
of the obstacle in the tail and near the top.

A real curve in a normalized stress vs. temperature diagram may appear to level
out at a finite stress, such as that shown on Fig. 43-8b. This may indicate the
existence of a separate flow stress contribution r, (for example, an ‘‘internal stress”’
7). In that case, decreasing the value of p (the exponent of ofx) should sharpen up
the kink. If so, one may wish to introduce r, as an extra parameter into eq. [43w]

and write
— P,
AG = F,-{l - (‘f ”) } (43w
F—r1,

with new values F, and p, that relate to the short-range portion only. Note that in
this case it is especially important to have both axes in Fig. 43-8b normalized by the
shear modulus: while the r,-level would appear even if only ¢ had been corrected,
the shape of the curve would be distorted if 7 had not.

On the other hand, a curve such as that in Fig. 43-8b could be indicative merely
of a single long-range obstacle; it would then theoretically approach the abscissa

- asymptotically, only at extremely high temperatures. A plot according to Fig. 43-8a

would then remain concave upward at the right end even when very small values of

P.M.S.—F
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p are chosen. It is then appropriate to assume that n < 1 in eq. [43v] and, conse-
quently (eq. [41g]), that

AGocIn(

Qb

) (=1 [43x]

AG (;:) (r - % —1> o). [43x']

The first of these relations is phenomenologically important, since it is
equivalent to a power dependence of the strain rate on stress, rather than an
exponential function: the exponent m (eq. [43c]) is then independent of stress
(although still inversely proportional to temperature). Two physical mecha-
nisms have been proposed to be approximately described by such a logarith-
mic stress dependence of the activation energy: cross slip away from a linear
barrier (SCHOECK and SEEGER, 1955); and double kink nucleation over Peierls
hills in a particular (and peculiar, see sec. 51) model by SEEGER (1956).

The second type of long-range AG(o) relation (eq. [43x’]) has also been used
on occasion, especially with r = 1. Such a proportionality between AG and
1/a is typical of dislocation unlocking from a linear barrier (FISHER, 1955). It
follows directly by integration [41g] from eq. [24d], a dependence of +ng ON
1/4/Aa, and is shown as ja—dashed line in Fig. 43-9a. It has the obviously
unrealistic feature of an infinite mechanical threshold, which is a direct
consequence of assuming a ‘“‘square well” energy profile for the locking
mechanism (Fig. 24-2). If one allows for a finite unlocking force, for example
by assuming a triangular energy profile (Fig. 24-3), one obtains (eqs. [24g7],
[41g])

or

o V1 — ot

o

AG [43x"]
or, in general, some combination of a typical “short-range” function AG(o)
in the numerator and a ¢ in the denominator (Suzuki, 1957; TEUTONICO et al.,
1964; FELTHAM, 1968). In order to extract the short-range law characteristic
of the linear barrier, it would then be opportune to plot ¢AG as a function
of o, as is done in Fig. 43-9b.

- In all these phenomenological relations, we have used # as a structure
parameter without specifying whether the maximum value of 7 ;ng or of
TpLang Was meant. We have, until now, dealt with the overcoming of a
particular “obstacle” (or other line glide resistance unit); for that case, of
course, 7, jng limits the possible values of the stress.

When there are many obstacles, they may have different values of #,;ng
(Figs. 24(?{ and 25-10). In that case, macroscopic measurements cannot relate
to the individual profiles, nor do they relate to the absolute maximum value of
7Line iN the entire slip plane; instead, as was discussed in detail in Chapter 2,
they relate to the plane glide resistance and its maximum value #py sng. It may
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(a) r

—= AG

/Iong~runge obstacle
Jl—u/%]

o/t

example: AG=A

(b) \

- short-range obstacle
[elumple:AG=A' (I—a/?)]

1
— ~AG-o AT

FiG. 43-9. Dislocation unlocking from attractive linear barrier: (a) conventional

AG(o) plot; (b) suggested a plot to establish 1/o-dependence and isolate numera-

tor. In plot (b), a typical short-range obstacle (here: p = q = 1) would give the
dashed curve.

be thought of as the average value of #,xg over particularly critical obstacles
(the “gates™ in a random array of discrete obstacles, for example), or the value
of 7 ;ng felt by the leading dislocation in a dynamic pile-up (eq. [24n]). The
case of randomly dispersed discrete obstacles will be dealt with in detail in
sec. 44.

Linearized Stress Dependence

We have seen that the activation energy AG generally depends on stress in
a nonlinear manner. For a long time, the dependence was assumed to be
linear, following SEEGER (1954). Strictly speaking, this would be correct only
for a box-shaped obstacle (and in addition only for a periodic arrangement of
these obstacles, if they are discrete, as we shall see in the next section). How-
ever, as had been realized earlier (COTTRELL and AYTEKIN, 1950), a linear
dependence can always be assumed for small changes in stress, no matter
what the shape of the profile; the constant ““activation energy” from which
the stress term is subtracted then generally depends on the mean stress level.
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g

bAa’

FiG. 43-10. A general apparent obstacle profile. For small changes of stress around
o = a,, the activation free enthalpy AG appears to be a linear function of o.

Figure 43-10 shows a general apparent profile, i.e. a plot of stress o vs.
apparent activation area Ag’ (times ). Let us assume that a standard strain
rate y, and a standard temperature 7', were chosen, from which small varia-
tions in either variable were then made. The Arrhenius equation for the
standard conditions then defines a stress o, necessary to maintain the rate y,
at the temperature T, :

AG(o,)

43
i, [43y]

Y1 = Yo €Xp —

(We assume constant structure, and thus constant stress, for the moment and
will discuss the general case in the next section.)

The activation energy for conditions slightly different from the standard
one may then be written as an expansion:

_ 2 4
AG(0) = AG(a,) — (o — a)bAa’ — “‘_ZL) b ‘9%’ + ... [432)

Provided the fractional variation in apparent activation area is small com-
pared to 1, as it would be in the illustration, Fig. 43-10, for all stresses not too
close to #, this series may be broken off after the first two terms:

AG(s) = AG(oy) + o,bAd'(c,) — obAd'(a,). [432]

The first two terms on the right-hand side are constants, and so is the co-
efficient of ¢; we thus have a linearized dependence of the activation free
enthalpy on stress.

The expression may again be considerably simplified when Aa’ = Aa (i.e.
when the second term in eq. [43h] can be neglected) for then the second term
in [432’] is the activation work and

AG(o) = AF(o,) — abAa(o,) (special case). [43z"]

Thus the constant ““activation energy’ from which the stress term must be
subtracted is the free energy of activation under the standard stress and, not,
for example, the total free energy F,. But even this simple interpretation is not
applicable to discrete obstacles where Aa’ # Aa.
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44. APPLICATION TO DISCRETE OBSTACLES

We have described discrete obstacles in sec. 25 as obstructions for which the
element glide resistance is strictly limited in both directions in the slip plane
(such as precipitates or voids), or at least for which the element glide resistance
diagram can be idealized to consist of isolated peaks with little overlap (such
as forest dislocations and possibly solute atoms). We shall Lere employ the
idealization of an obstacle of strictly limited width w, small compared to the
spacing /. (Fig. 25-1). The element glide resistance may then be integrated over
the width to give the obstacle strength (eq. [25d])

K = g pm bw

which, however, may be a function of the penetration y into the depth of the
obstacle—a function concisely described in the obstacle profile K(Ay).

The plane glide resistance encountered by individual dislocations that move
long distances through a random dispersion of such obstacles is connected to
the strength of the individual obstacles and their spacing / by the Friedel
relation (egs. [25w’], [25dd]. + K

2E
TPLANE — §°——y

bl

K 3/2
s~ 1 —
(ZE) )

To describe the influence of thermal activation at constant structure (), we
assume the effective obstacle strength to depend on temperature and strain
rate, and thus

[44a]

s = s(T,p). [44b]

This assumption implies that the dislocations follow the same path through
the obstacle structure at all temperatures and strain rates, namely the path
that led to the purely geometrical derivation of eq. [44a].

‘Such a hypothesis may not be justified under all circumstances (DieHL et al.,
1965). In fact, computer experiments of KLAHN et al. (1972) leave the possi-
bility that it may be violated, although they found the FRIEDEL relation [44a]
well satisfied. This strengthens our belief that eqs. [44a] and [44b] form an
adequate basis for a description of thermal activation of dislocations through
discrete obstacles. The general averaging procedure that must, in principle, be
followed when this approximation is inappropriate, has been written down by
FrANK (1968). A very useful generalization of the Friedel model has been
given by LABUscH (1962). :

In this section, we shall first describe the properties of individual obstacles,
‘then the influence of a random dispersion of obstacles on the macroscopically
measured quantities, and finally the possibilities offered by a variation in the
number or concentration of the obstacles.




148 THERMODYNAMICS AND KINETICS OF SLIP

Obstacle Strength and Activation Distance

Figure 44-1a shows four successive equilibrium positions of two neighbor-
ing dislocation segments in front of three obstacles. In all cases, the dislocation
is in stable equilibrium with respect to the two outside obstacles and with
respect to its own shape in the obstacle-free region; but with respect to the
center obstacle, the first two positions are in stable equilibrium at two differ-
ent stresses, the last two in unstable equilibrium at the same two stresses.
Figure 44-1b shows all four points on a line glide resistance diagram similar
to Fig. 25-4b, and Fig. 44-1c shows the same in profile form.

All effects of bowing have vanished from Fig. 44-1c. The distance /, between
obstacles, however, is still implicitly contained in this profile; for the areas Aa
would clearly grow if /., were increased, but the properties of the obstacle
should not be affected. (Here enters the essential condition of negligible over-
lap between “discrete obstacles™.)

The parameter /,, which was arbitrarily prescribed in Fig. 44-1a, can be
eliminated again from the results by defining the activation distance

[44c]

bT g

(b)

ba,

>
1

(1,=const)
(c)

bAa

Fi1G. 44-1. (a) Successive equilibrium positions (1, 2, 3, 4) of two neighboring
segments of dislocation at an obstacle. (b) The glide resistance diagram, (c) The
sheared diagram or obstacle profile.
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and remembering the equilibrium equation [25¢]
K = 7y 1ng L. [44d]
In this way, one can obtain a diagram of obstacle strength versus activation

distance, or force-distance diagram, or obstacle profile, as shown in Fig. 44-2.

K=Tyeble

x>
L

AG

AW

h
3
'
]
1
'
1

. Aa
Ay = —1‘

FIG. 44-2. The force-distance diagram for a discrete obstacle.
It is identical to Fig. 44-1c except for scale factors. These scale factors do not,

however, influence the areas corresponding to AW and AG. Equations [44c]
and [44d] give for the activation work (remembering ;xg = o in equilibrium)

AW = 71 1ng bAa = KAy [44e]
and (eq. [41g]) '
’ K
AG = f bAa dr = f Ay dK [44f]
o K(o)
where
K(o) = obl.. , - [44d']
Finally, one may turn eq. [44f] around and write
dAG
— — = Ap(K). 44f"1
= = M(K) !

The activation parameters have thus been expressed in obstacle properties
only.

An essential condition for writing eq. [44f] as we did was that I, was
assumed constant; otherwise, the derivative dr/dK might have brought in
terms from /. In real materials, /. is not known, only the average spacing [ is
(at best). In the model we use for randomly dispersed obstacles, the ratio 1/l
depends on the applied stress (eq. [25j]). This leads to a substantial complica-
tion to be dealt with presently.

Effective Obstacle Spacing and Apparent Activation Area

We have seen that in a material with a random dispersion of obstacles of
average planar spacing /, the relation between obstacle strength and plane
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glide resistance is given by eq. [44a]. Conversely, at an applied stress o =
TeLang, the force exerted by the dislocation on the critical obstacle that makes
long-range slip possible (now, the ‘‘rate-controlling” obstacle), is

K(o) = 2E- (ib_l)m
2E]

[44¢]

“ This relation must replace eq. [44d’] in the lower limit for the integral [44f],
if the activation energy AG described by it is to refer to the rate-controlling
obstacle in the random dispersion. The stress derivative of this activation
energy, i.e. the apparent activation area times b is then given by

pAg = — 98C| _ Ay(K)-Z_K — XAy — 3p0a [44h]
ag |l g

where it is explicitly stated that the average obstacle spacing / (along with the
nature of the dispersion and of the individual obstacles, in other words, the
entire glide resistance diagram) is held constant. The model treated above of
a single obstacle triplet for which the (local) spacing /. was known and held
constant would instead give (eqs. [44f] and [44d’]

__0AG

= bl, Ay = bAa. [44h']

oK
= Ay(K)"a—‘

LRI

While in this latter case, which refers to a local model, the apparent activa-
tion area is equal to the true activation area, in the former case it is not. It is
for this reason that we have introduced the symbol Aa’ and the name apparent
activation area. The case described by eq. [44h] is, if anything, the more
important one, since it describes macroscopic behavior which can be controlled
or measured. This fact was recognized first by LABUSCH (1962); a recent
different treatment (MACEWEN, 1973) is in error (SUREK et al., 1973b).

An elaboration of the role of the effective obstacle spacing may here be helpful.
In Fig. 44-3, it is treated as a free parameter and different  — Aa diagrams are
calculated for the same K — Ay diagram. But in a real material, /. cannot be chosen

_ klay)

Tune = ble

A6(a,)

AG{0y)

L.(0y)
L (0)

bAazblAy

Fic. 44-3. The influence of the effective obstacle spacing on the glide resistance
diagram.
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arbitrarily. Comparison of eqs. [44d’] and [44g] shows that

I 2E\ /3 .
7 = (m) . [441]

At constant structure ), l. is thus a function of the applied stress. For the two
stresses corresponding to the two values of /. in Fig. 44-3, the relevant parts of the
glide resistance profiles are outlined. Only the two heavy points correspond to
measurable pairs of o and Aa. Evidently, the stress derivative of AG is here not
— bAa.

On a formal basis, we may calculate AG(o) by inserting the proper value for the
activation area:

Aa(o,7) = I(2)AN(K) [44c’]

where K depends on o and = through eq. [44d’]. Inserting this dependence explicitly
into the expression [41ﬂ, we get for the activation energy :

frine
AG(O) = J b ‘le(ﬂ) . A}’(“’uNEhL(C’)) ‘dreine- [44.,]

o

The integration is, as specified, only over » = ryne, With the applied stress ¢ held
constant during the process. In terms of Fig. 44-1a, this means that, while the
activation energy is calculated through a series of equilibrium processes, during
which the dislocation sweeps out substantial areas by bowing out, the effective Iength
1. is held constant and not decreased by any encounter of new obstacles. This is
realistic, since the path of the dislocation during the activation process will obviously
not follow the tremendous bow-outs required in equilibrium.

The above argument also shows that it would be incorrect to execute the integral
[44f] for AG over TpLane instead of rinve: this would correspond to adjusting the
effective length continuously during the integration.

Strictly speaking, one must assume that even in whatever area the dislocation
does sweep out, it encounters no new obstacles. This area should be of the order of
the activation area, so this assumption means

Aa < 2. [44k]

Drawing a general conclusion from this discussion of randomly dispersed
discrete obstacles, we see that the only “profile’” we can measure even in
principle is an apparent one: a diagram of applied stress o against apparent
activation area Aa’ (Fig. 44-4a). This quantity Aa’ is derived from the slope
" in a ¢ — AG-diagram (Fig. 44-4b); if this is not available,

_laAH
b do |r

could instead be used, as taken from the slope in a 0 — AH-diagram (Fig.
44-4c); or, finally, simply the operational activation area (eq. [43i]) from a
o — In y-diagram.

Even the apparent activation area Aa’ is generally not equal to the true
activation area Agq; in the above case, it is two-thirds of it. Similarly, the
apparent activation work AW’ is not generally equal to the true activation
work AW; in the above case, it is again two-thirds of it. Only the activation
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FIG. 44-4. (a) The apparent obstacle profile. (b) The plot of stress vs. activation
free energy, used to derive the apparent profile. (c) An alternative plot that may
be used to obtain a profile.
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Fic. 44-5. (a, b) An alternative to the method of Fig. 44-4 when the obstacle
distribution is known to be random.
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energy is, by definition, always the area above any particular o-level (Fig.
44-4a).

When it is known that one deals with randomly dispersed discrete obstacles,
it would make sense to plot 6*/3 against AG, and then the slope in this diagram
again against 0/® (Fig. 44-5). In the latter diagram, Fig. 44-5a, the ordinate is
then proportional to K, the abscissa to Ay. One thus obtains a correct impres-
sion of the shape of the obstacle profile—although one would have to know
. the obstacle spacing and the dislocation line energy to get numerical values for
either K or Ay. Note, however, that both AG and AW are directly obtained
from such a diagram, without a knowledge of the scale factors.

u, Kby
(o/p) ‘ubl'(l)

s

1
b

A’ 0a Ay 2.
b (u) b 3(

Fic. 44-6. A plot of force K vs. activation distance Ay derivable from experiments

in which the flow stress is controlled by one set of randomly dispersed discrete

obstacles. The scale factors depend on the obstacle spacing, which would have to
‘ be measured metallographically.

Finally, one may wish to again incorporate the temperature dependence of
the shear modulus into this apparent profile. For discrete obstacles, one then
obtains the plot shown in Fig. 44-6. Only for the interpretation of the two
coordinates, we have used 2E = pb?.

When the obstacle profile can be described by a phenomenological relation
equivalent to eq. [43w], so that

AG = Fo-{l - (g)}q [44¢]

this can be translated into the respective relation for the macroscopically
observed stress by means of eq. [44g]:

g\2r’/3)a
) AG = Fo-{l - (;) } [44€]

where # is now meant to be #ppsne. The % power is a direct consequence of the
randomness of the obstacle distribution. Since the arguments that limited the
exponent p in the general relation [43w] to < 1 now hold for p’ the net stress
exponent p is now even more limited: '

0<% =p<i [44¢")
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F1G. 44-7. Test for the exponents in the phenomenological relation [44l) if it is
obeyed over the entire temperature range.

By the trial-and-error method, one may find the correct exponents that give
straight lines, at least at either end, in Fig. 44-7 (cf. Fig. 43-8a).

The Interpretation of Activation Entropies and Enthalpies
The activation entropy defined in eq. [41k] as

_ _ 94G|
AS = or |,

and the activation enthalpy defined in eq. [41{] as
AH = AG + TAS

are not as closely related to obstacle properties as the activation free enthalpy

. Ny
AG = ija dT]_]NE = f Ay dK.
4 k(o)

We have discussed one instance of this general fact in the case of two-stage profiles
(sec. 43). The case of randomly dispersed discrete obstacles provides another
example, which was first described by Gisss (1967).

Here, the effective obstacle spacing /. is, for a given average obstacle spacing /, a
function of ¢/u according to eq. [44i]. If the shear modulus p depends on temperature,
then [/l depends on temperature at constant stress and this dependence enters into
the thermodynamically defined activation entropy, above, and consequently into
AH. The local activation process, however, which is not accessible to direct macro-
scopic measurement, occurs at fixed .. The problem is most easily avoided by using
reduced variables ofu, AG/ub®, and kT/ub?, as we have done before—although, in
principle, such a normalization procedure assumes some minimal knowledge of the
physical nature of the local process, namely that x and b are the proper material
properties to be used. : ‘

The problem is a general one, as we mention in passing, An example relating to
linear barriers would be the nucleation of a pair of kinks with a finite constriction
energy. This constriction energy would depend on the width » of the stacking fault
in the neighboring unactivated region which, in general, depends on the applied
stress and on some temperature-dependent material property such as the stacking
fault energy. However, during activation, 4 in the unactivated region is to be held
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constant. Thus the macroscobic derivatives with respect to stress at constant
temperature, and with respect to temperature at constant stress, do not directly

" relate to the local process.

In this sense, AS and AH are ‘“‘apparent” activation parameters just as the
apparent activation area (eq. [43g])

JAG

da |1

GiBBs (1967) called them ‘‘experimental” (index e), which is unfortunate because
truly experimental parameters (here called operational) involve the pre-exponential
factors also. In the case of AS and AH, we have decided to use a single definition
only, the thermodynamic one, and no further adjectives. In the case of Aa’, this
seemed unadvisable because of the obvious geometric interpretation of the name
activation area, which is Aa # Aa’.

Aqd = —

The Flow Stress as a Structure Parameter

Until now, we have always assumed the structure to be constant. Often this
is not so. For example, in an experiment at constant stress (i.e. a “creep’
experiment), the strain rate often decreases as the straining progresses. While
one interpretation of this phenomenon is based on an exhaustion of the
number of mobile dislocations, the currently preferred one is that this is due
to work hardening, i.e. an increase in the number of obstacles, and thus a
decrease in the obstacle spacing. For another example, precipitation from
solid solution could be going on during straining; this increases the number of
precipitates but decreases the number of atoms in solution—the two harden-
ing mechanisms would thus be affected in opposite directions.

The maximum plane glide resistance is a direct measure of the average
obstacle spacing /, so long as the nature of the individual obstacles does not
change (eq. [44a]):

fovans = 5(K) 2b—f = (). [44m]

Its magnitude can change, for example, with strain according to a work
hardening coefficient ©:

d# = 0 dy. [44n]

Unfortunately, both #p; sne and § would have to be measured by extrapolation
to absolute zero temperature.

To make a measure of “‘structure’ more accessible, one can make use of the
fact that, so long as the nature of the individual obstacles does not change, the
same temperature and strain rate will lower the obstacle strength by the same
amount. The stress necessary to achieve a standard strain rate at a standard
temperature could thus serve as a measure of the structure. We call it the flow
stress: '

2E
TrLow = S(Ts1p, ')"er)'E = 7(I) [440]
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or, expressing the same thing in another description:

AG("'FLow) [4 40’ ]
kTso

(provided, of course that ygrp, is not so small that the structure changes with
time, nor so large that dislocation motion is drag-controlled).

This flow stress is (like all quantities we have called ) a material property:
it is a first-order description of structure. In this same first order, we may now
reinterpret the nomenclature “at constant v we have already used with many
partial derivatives to mean “at constant flow stress”. (In reality, it implies “at
constant structure” in al/l possible parameters.) We shall often just use the
symbol 7 for g1 ow.

The case of work hardening discussed above may now be described by

dr = 0dy [44n']

6 being the work hardening coefficient at the standard temperature and strain
rate.

The effects of a change of structure on the strain rate at constant stress is
now described by (CHENG and Kocks, 1970):

YstD = Vo €Xp —

IAG
or

= bAd'. [44p]
T |

It is exactly equal to the apparent activation area (times b). This may be seen
easily in two ways. First, the identity

oAG| _ ad do
d_< - Qo lr O7

or
degenerates into [44p] at the standard temperature and strain rate specified by
AG, where ¢ = 7. Second, one may take the derivative [44p] explicitly from
the integral [44f] with the lower limit [44g]; in expanded form:

OAG _dAG L 9InK| 1dIn/
orle dK = dlnlle 7dlnt

The three terms separated by dots on the right-hand side are, respectively,
—Ay, % K, and —1/r, by egs. [44{'], [44g], and [44m), respectively. Since
K/ = bl,, the right-hand side is § bAa .

We make use of eq. [44p] in the interpretation of creep and stress relaxation
experiments.

[44p']

AG

Discrete Obstacles Plus Internal or Friction Stress

Not only the flow stress, but also the activation area depends on the obstacle
density. With eqs. [44c], [44i], and [44a], it is
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Aa=1,Ay = I-Ay-s~1/3 . [44q]
where Ay and s are properties of the individual obstacle only, but /is a function

only of their area density (eq. [25aa]; the obstacle width is again neglected

with respect to the obstacle spacing).
This density dependence may be expressed through the flow stress; for

example, by

1 __ D [441]
bAa(l) AW(Tstps Yst0) '

as may be verified by explicit insertion of eq. [440] into [44q], with (eq. [44a])
AW(Tstp, ¥st0) = Ay-2Es¥ = KAy [44r']
which is again a property of the individual obstacle.

K
sa’(1)

3
slope ZbW’

T (l.)

Fic. 44-8. Test for flow stress control by a single set of discrete obstacles: the
inverse activation area’ must be proportional to the flow stress as the obstacle
spacing is varied (Cottrell-Stokes law).

Equation [44r] may be experimentally tested (with eq. [44h]) by varying the
obstacle concentration and plotting 52/Aa’ versus 7 it should give a straight
line through the origin (Fig. 44-8). Note that 1, or even the concentration, does
not have to be known for each obstacle, only the macroscopic mechanical
properties are needed.

Figure 44-8 can be used to test an implicit assumption we have made above:
namely, that the obstacles under discussion provide the only contribution to
the flow stress. The plot becomes really useful, when there is a possibility of
other contributions. We will illustrate this on two simple examples; in one

' there is an additional “constant” glide resistance, in the other there is a second
set of discrete obstacles.

First, let us postulate that the element glide resistance diagram (such as in
Fig. 23-2) contains, in addition to a contribution from the discrete obstacles,
one that may be described by a significantly different “wavelength”; for
example, a lattice resistance that may, on the scale of the obstacle spacing, be
smoothed out to a “friction stress”; or an internal stress that varies slowly
compared to the obstacle spacing. In both cases, not only the element resis-
tances, but also the line glide resistances are additive. The plane glide resis-
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tance would also consist of two additive contributions:

2E
TPLANE = §1 — + 73 [44s]
bl,
although 7, is then not necessarily the amplitude of the nondiscrgte compo-
nent: in the case of the long-range internal stress, it may be smoothed out by a
dynamic pile-up as in eq. [24n]. For our purposes here, 7, is a constant.

bZ
Ha‘(l)
T
(a)
“ (/]
' Tz//u s
T
(b)
T, T
bAa

FIG. 44-9. The case of linear superposition of an “‘athermal” flow stress contribu-

tion 7, ocp and a contribution from an independent set of activatable discrete

obstacles: (a) plot (eq. [44t]) of inverse apparent activation area vs. total flow

stress, as the density of discrete obstacles is varied; (b) apparent glide resistance
profile.

If the discrete obstacles, marked here by the index 1, are the only flow stress
contribution that may be lowered by thermal activation, nothing has evidently
changed in the above description of a single set of obstacles, except that all
symbols in eq. [44q] should obtain an index 1, and r in eq. [44r] should be
replaced by + — 7, -

_ )
bAa(l)) AW (Ts1p, Ys1o)

Figure 44-9a illustrates this equation, again making use of the proportionality
between true and apparent activation area (eq. [44h)), and furthermore allow-
ing a number of different “standard” temperatures to enter AW. For this
purpose, 7, is assumed to be proportional to the shear modulus; its slight

[44t]
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temperature dependence is then taken account of by plotting r/u in the
abscissa. In this case, the lines for different temperatures must all extrapolate
to the same point 7,/n on the abscissa.

Figure 44-9b shows the glide resistance profile as it would be macroscopi-
* cally measured: a combination of the two distinct obstructions. Only the part
above 7, is supposed to be changed by changing /;, and only to this part does
the quantity AW refer, which determines the slopes in Fig. 44-9a. Obviously,
if the profile in Fig. 44-9b were due to a single kind of discrete obstacles
(although possibly different resistance mechanisms as in a forest dislocation),
both parts would change with the spacing /, and a behavior as in Fig. 44-8
should be observed. This is what actually happens in strain-hardened pure fcc
materials; this proportionality between the two contributions to the plane
glide resistance is an example of the Cottrell-Stokes Law (COTTRELL and
STOKES, 1955; HAASEN, 1958).

b!
Aa’(1)
T2
T
b2
Ao ______
)
BT ,
Bedh) Vi dis T

{1 T,

FiG. 44-10. As Fig. 44-9a, but with a temperature dependent =, (eq. [44t']).

The interpretation of =, as an internal stress, independent of temperature
except through the shear modulus ., was not necessary for the separability of
the two contributions. In the other example given in the introduction, that of
a lattice friction stress, , could also be lowered by thermal activation. In that
case, we obtain (eq. [44h])

b? b? 3 b

= 3 - 44t
Ad'(ly) Aa'2+2AW'1 ) == a4t

“which is plotted in Fig. 44-10.

Finally, there may be cases when an internal or a friction stress superpose with a
flow stress contribution due to discrete obstacles in a nonlinear fashion (although we
cannot think of an example). If the discrete obstacles are the only ones thermally
activated, the activation area must again be proportional to their spacing, and their
flow stress contribution 7, must be inversely proportional to this spacing. In this
sense, a diagram of 1/Aa’ vs. =, as that in Fig. 44-9a, amounts to a diagram of =; vs.
7: of the relation between ““effective stress’ and ‘‘flow stress”. Figure 44-11 demon-
strates this in the case where the superposition law is

2

2 = 7,2 4 7,2 [44u]
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b2
Aa’(1)

()

FIG. 44-11. As Fig. 44-9a, but with superposition of the squares of the flow stress
contributions (eq. [44u’]).

in which

1 1 v S—
S _— \/TZ — T 2. ’
2D oC T, o« (D) 2 [44u’]

‘Note that in all cases where the exponent in eq. [44u] is larger than 1, the asymptotic

relation for large flow stresses is a straight line through the origin. This could some-
times be mistaken for the case of a single obstacle (Fig. 44-2;).

Two Sets of Discrete Obstacles

When there are two sets of discrete obstacles, the statistics can obviously
get very complicated. One extreme case is, however, relatively simple and
should be of particular interest: namely, when there are many weak obstacles
and few strong ones, so that the contributions to the flow stress may be
comparable. It is then, in principle, possible to vary the concentration of either
set and obtain rather complete information. Typical cases could be small
precipitates or solute atoms as the weak obstacles, and large inclusions or
forest dislocations as the strong ones.

For this case, imagine three successive positions of a dislocation segment
under the same applied stress (Fig. 44-12a). In position (1), it is a quasi-
straight piece of dislocation between two of the strong obstacles. Let us assume
that the force it exerts on each weak obstacle is almost enough to break
through it. In that case, thermal activation near the weak obstacles could help
the dislocation overcome this particular row of weak obstacles in a reasonable
time.

The force exerted on the strong obstacle would be very small compared to
its breaking strength. Thus, in the next position (2), we consider the segment
still held up at the strong obstacles, but at a new set of weak ones. Since the
dislocation must now have an average curvature between the two strong
obstacles, the angle included at each weak one is smaller. Thus, the force
exerted by the dislocation on these obstacles is now a smaller fraction of the
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FiG. 44-12. A dislocation segment acted on by many weak discrete obstacles
between two strong ones: (a) three successive positions under the same applied
stress; (b) the critical configuration.

breaking strength and thermal activation will take longer. On the other hand,
the force exerted on the strong obstacles has now risen and thus thermat
activation near the strong obstacles may come into the realm of possibilities.

Let us assume that the dislocation can still break through the weak obstacles
earlier, so that it arrives at position (3). Let this position be characterized by
the condition that the waiting time for thermal activation has become equal at
the strong obstacles and at the weak ones. There is then no further time scale
during which the segment may be considered to be in equilibrium in front of
these two strong obstacles. This condition was postulated by Kocks (1968) to
be a critical one.

Figure 44-12b illustrates the geometry at the critical condition, The disloca-
tion segment has an average curvature that is less than that prescribed by the
applied stress o: the individual forces K, exerted by the weak obstacles on the
dislocation may be smoothed out into a kind of “back stress” given by
K,/bL,—provided there are many weak obstacles between two strong ones.
The angle ¢ near each strong obstacle (Fig. 44-12b), which corresponds to this
curvature is then givenby

_ K, . 2Ecos¢
bL, bL,

(L, € Ly). [44v]

The numerator on the right-hand side equals the force K, only when
é, ~ ¢, i.e. when the bow-out between two obstacles on the set 2 is smail
compared to that between set 2 ; in other words, when set 1 is weak compared
toset}: ' _

K, =2Ecos¢ (K, < K)). [44v']

Under this same condition, the area swept out by the whole segment is
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almost the same as that swept out by the arc (dashed) that would give rise to
same force K, on the strong obstacles in the absence of the weak ones; thus
L, is approximately equal to the effective spacing /., of the strong obstacles.
Since L, ~ I,, when L, € L,, we have at the end

_ K | K
44
= Vo [44w]
or
o= 5(T, 7) = + 55(T, 7) —. [44w']

bl2

This equation may be used in two ways: for the flow stress as a function of
the average obstacle spacings /, and /,:

r=m) +rall) ’ (44w’]

and for the reciprocals of the apparent activation areas

1 Jdo 1 1
—=—b—=—+ —. 44
Ad’ JAG Ad', Ad, [44x]

Together, these two equations give the equations of two straight lines in a
diagram of 1/Ad’ vs. 7, one for the case that /, is varied, the other for the case
that /, is varied:

R AR :).
Ad’ (ll) LAWY AW'

b2 _ b3{ Ty + T(IZ) — TI}.
Ad(ly) AW, | AW,

These two straight lines are shown in Fig. 44-13. The slope of each line is
" given by a property of the individual obstacles whose number is belng varied.
It is steeper for the more rate-sensitive material.

Furthermore, one can determine the contributions from each set to both the
flow stress and the apparent activation area of the “alloy’’ corresponding to
the intersection of the two lines (i.e. with the obstacle spacing [, that was held
constant when set 1 was varied, and the obstacle spacing /, that was held
constant when set 2 was varied). The ratios of these contributions follow
directly from the intercepts (Kocks, 1968), as may be seen directly from eqs.
[44y]:

[44y]

Ty Y,. Aa'1__ X,

RN XN [44y]
T2 [ Y| Ad', | X!

A particularly useful application of this technique is to work-hardening
materials: when a variation of strain (and thereby presumably of the forest
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a truly long-range internal stress (or image stress) that has a nonzero mean
value over the area actually swept out in the slip plane.

Low-stress Limit for the Boltzmann Term

For the classical box-shaped obstacle, where the activation energy depends
linearly on stress, the “probability of success” given by the Boltzmann term
does not go to zero for zero stress. Apart from any correction due to reverse
jumps, which will be considered later, the mild stress dependence of the
preexponential factors in the rate expression will then become important. Even
the frequency factor, which must enter all measurements, depends on stress
through the obstacle stiffness (sec. 42). '

The first question to be answered here is: when does the stress dependence
of the activation energy become negligible with respect to that of the pre-
exponential factors? We shall discuss-it in terms of the phenomenological
exponent m (eq. [34r]) and assume that in order of magnitude

m _dlny,

.= ~ 1. 45a
dlno [45a]

T .

The contribution to m from the Boltzmann term is, with eq. [43g],

1 3AG| _ Ad opb?
iT3melr 52 p kT [45b}

r b? pkT

mg =

where ub3/kT ~ 100 (Table 3-I). Thus, when Ad’ is very small (say 106%) mg
is dominant (exceeding m,) only for stresses above 10~%u. But for discrete
obstacles where typically Aa’ ~ 100052, the contribution from mg is domi-
nant at all stresses above o ~ 10~ 5.

For long-range obstacles, in which Aa’ depends inversely on stress (or a
higher power of it), mg retains, of course, its constant value over all stresses
(or even increases to lower stresses). But even for short-range obstacles where, -
in principle, the contribution mg goes to zero for zero stress, our conclusion
is that it may well have values comparable to m, at all stresses of practical
interest. It would only be negligible if

kT

o <L v - mg <€ 1. [45b°]

Reverse Jumps

Figure 45-1 is a copy of Fig: 41-1, showing two successive stable positions,
1 and 2, under the same applied stress. A ‘“‘reverse jump’” is a process that
would bring a dislocation back from the stable position 2 to the unstable
position U, from where it would, under positive driving force, go back to the
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Tsro, Ysro

FIG. 44-13. A method of separating two contributions to the flow stress from two
sets of obstacles the densities of which can be independently varied.

dislocation spacing) gives a straight line that does not go through the origin,
there must be other obstacles; when the r-intercept is negative, these are more
subject to thermal activation than the forest dislocations, when it is positive
they are less rate sensitive.

45. Low STRESSES AND HIGH TEMPERATURES

Until now, we have explicitly neglected reverse jumps of dislocations over
activation barriers. These may become important at low stresses, where an
Arrhenius-type rate equation can no longer apply. The analysis below, which
differs from conventional ones in a number of important points, shows that
the stresses at which reverse jumps must be taken account of are much too
low to be of any practical interest, except when the obstacle spacing is no more
than a few atomic dimensions. The propagation of kinks over second-order
Peierls hills (sec. 24) or the generation of vacancies at jogs in screw disloca-
tions (sec. 26) may be examples.

The condition for “low’ stresses, in the above problems, turns out to be one
in which the stress must be small compared to some term linear in the tem-
perature. In that sense, one may also call this a “high-temperature’’ case. The
condition for phonon drag to become important during thermal activation
involves a similar comparison. On the other hand, an approximation may
sometimes be of interest, in which the stress is merely small compared to the
maximum glide resistance, irrespective of the temperature; or in which k7T is
high compared to the total activation energy, irrespective of the stress. These
cases will also be discussed in the following.

The stresses to be used below are again total applied stresses, not any kind
of “effective” stress. However, any long-range average glide resistance, which
leads to energy storage, must always be subtracted from the applied stress.
This is again a consequence of the Second Law, but will be explicitly derived.
As was pointed out in the introduction of 7grog (sec. 22), this term may include
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FiG. 45-1. A glide resistance profile showing the activation energies for forward

- “«
jumps (AG) and for reverse jumps (AG).

“stable position 1. This can happen under the action of thermal fluctuations,

despite the adverse influence of the applied stress.
Just as the activation free enthalpy for the forward process (which we now
mark by an arrow pointing to the right) could be described by (eq. [41a],

T = Ty iNE)-
- av
AG:f (r— o)b da

so the activation free enthalpy for reverse jumps is

A<(_;=f(q-——o)bda=f (-r—c)bda—J. (1 — )b da
az a a =
= AG — (o0 — rsror)ba  [45¢]
where
J‘ vbda = Tsrogba = FSTOR [45d]

az
is the free energy stored during the unit process, and
a=a—a [45e]

is the same as the area swept out after a successful jump, roughly /2 in the case
of discrete obstacles.
The net rate of thermal release is now

AG

— - > - AG

P=P —P,=vexp— —— —vexp — —_. 45
t t t v €Xp kT v eXp T [ f]

— «
The frequency factors v and » must be assumed equal in order to proceed:

- - =

V=" =g, v ‘ [45g]

This is a reasonable assumption when the two obstacles are identical.



166 THERMODYNAMICS AND KINETICS OF SLIP

-
With the expression [45¢] for AG, we obtain the result

P, = v €Xp — Ag;o){l — exp — (0_;(__5;_05)_@} [45h]

which is the most general rate equation for thermal activation at constant stress
and structure. (The right arrow above AG has been dropped again: AG refers
to forward jumps.) The correction factor becomes equal to 1 and thus reverse
Jjumps can be neglected for

O — TSTOR kT (é) 451
— > — ) [45i]

For stronger discrete obstacles, the average obstacle spacing / is generally in
excess of 100 Burgers vectors; then, reverse jumps can be neglected above
o ~ 10~5u. But weaker obstacles or other glide resistance profiles that repeat
after distances of the order of 105 or less may show effects of reverse jumps at
stresses around ¢ ~ 10~*x or somewhat higher.

When the inequality [45i] is reversed, the correction factor in eq. [45h] may
be expanded, with the result

— TsroR)b AG kT ,
P, = VG'(O—%)-—CZ'@‘P - 'k—;.,O) o0 — Tstor < b [45]]

This equation differs from conventional ones in three significant respects:

(1) The net rate vanishes, in general, at a finite applied stress, equal to the
average glide resistance.. Only when no energy at all is stored during
plastic deformation does the strain rate become proportional to the
applied stress in the limit of vanishing stress.

(2) The proportionality factor of the stress is not the activation area Aa, but
the area per “obstacle’ a: it is often significantly larger, and it is
independent of stress (L1, 1970; NicHoLs, 1971). Thus, the linearity of
the pre-exponential factor in (¢ — 7sror) occurs for all forms of the
stress dependence of AG, not only for a linear one.

(3) The stress-dependent Boltzmann term has not disappeared from the
equation through the linearization. While, in theory, this provides a
correction of “second order”’, the discussion under the last subtitle
showed that this can be numerically significant (eq. [45b]).

An approximately linear stress dependence of the activation rate thus occurs
only under very restrictive conditions (eqgs. [45j], [45b]):

kT
=m,+1 f g 45k
m=m, + or TSTOR<0<b<bA, [45k]
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FiG. 45-2. The activation rate P,, plotted against stress, for the exponential
Arrhenius equation, the general law (eq. [45h])) and the sinh-law (eq. [45n]). All
slopes in units of vg exp (—F,/kT).

An example would be Fgror ~ 1073 eV, ¢ ~ 107%u, a ~ 100 4%, Ad' ~
Aa~ 10 b2, T = 300 K.

Figure 45-2 shows an actual plot of the activation rate versus stress accor-
ding to the general equation [45f], for rsror = 0, Aa = const, and a = 8 Aa.
An inflection like the one shown must occur, when the initial slope ba/kT is
larger than that of the tangent to the Arrhenius curve from the origin, which
is 2.7 bAa/kT, as is the case for most realistic obstacles.

A special case that has attracted much attention occurs when a = 2Aa. If this is
to be true over a range of stresses, Aa must be constant; the glide resistance diagram
is then a ‘‘square wave” (Fig. 45-3). For generality, we allow a finite level of rs1or.
This case could then be an idealization of jog dragging (Fig. 26-2). With rstor = 0,
it could describe the motion of a kink over a second-order Peierls potential.

For this case, we can write the general equation [45f] in the form

F AW, )N 2
1 1 1
Pg = vg €Xp — k—]—, {CXD ﬁ — €Xp kT }. [452]
But since here

—_— -

AW, = — AW, = (¢ — 71sror)bAa (45m)
eq. [45£] is exactly equal to

Fy . 2bA
Py =vgexp — k—]l" sinh {k_Ta (e — TsTon)}» [45n]

|
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Tune

-

bAa

FiG. 45-3. The special obstacle profile that leads to a “sinh-law” (eq. [45n]).”

The. low-stress limit is again as in eq. [45j], for the special case a = 24a, since
AG = F; to first order.

Note that a sinh-law, eq. [45n], would not have been possible, had the forward
and reverse work terms not been equal and opposite (eq. [45m]). This is clearly a
very special condition (KAUZMANN, 1941); the complicated law [45n] has thus rarely
any advantage over the linear law [45j]: the latter covers any obstacle profile,
although it is limited to lower stresses.

The sinh-law can be useful in one respect: as Fig. 45-2 shows, it describes the
limiting behavior for the maximum reasonable influence of reverse jumps.

High Temperatures

Without reverse jumps, the temperature dependence of the stress to achieve
a certain strain rate came only from the stress dependence of the activation
energy. A simple linear dependence AG(a), for example, gave a linear law for
o(T,ystp); it is shown again in Fig. 45-4, labeled “Arrhenius Law’’. When the
stress goes to zero, the activation energy becomes F,, and the temperature is

kT, = F,/In (7,/7). [450]

But, at this limiting temperature, the Arrhenius Law cannot describe
thermal activation over short-range obstacles; clearly, the influence of a
strain rate on the temperature at zero stress (eq. [450]) cannot be real. Once
again the general eq. [45h] for the net rate of thermal release in the presence
of reverse jumps remedies the situation: the net rate goes to zero as the stress
approaches zero (or, more exactly, 7gror). The approximation [45j] shows that
then, for AG = F,, the stress decreases exponentially with temperature, rather
than having a sharp kink at T:

o= exp Lo, [45p]
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sinh-law for
Y/v.=108
10°®

Arrhenius law

\ T,
1

FiG. 45-4. The decrease of stress with temperature for the Arrhenius law and the
“sinh-law”’.

Figure 45-4 illustrates this behavior, using instead the sinh-law over the
entire range to obtain the limiting case. It is seen that, at the temperature 7,
belonging to a particular strain rate, a finite stress is still necessary to achieve
net flow. For experimental determinations of 7, as a measure of F,, it is
important that the extrapolation be made from higher stresses. When the
obstacle is not box-shaped, and thus the o — T relation due to the Arrhenius
Law not linear, this may be difficult. The procedure suggested in Fig. 43-8a
may then be useful. i :

The stress-temperature relation [45p] for a certain strain rate contains not only
an exponential, but also a linear temperature term. It should lead to an eventual
rise of the stress with temperature at high temperatures. Straightforward analysis
of eq. [45p] shows that, for this reason, a minimum would occur in the o-T diagram
at . .

kT = F,. {45q]

But at this temperature, the application of a Boltzmann term becomes questionable.
Actually, such a temperature is not accessible unless the total activation energy of
the ““obstacle” is less than 0.1 eV (900°C), and then 7, would typically be 20 times
smaller or 60 K.

Another effect can become important at lower temperatures than that given by
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[45q], which also leads to an eventual linear rise in stress with temperature, and
that is phonon drag. At zero glide resistance (between obstacles), it can be approxi-
mately described by eq. [31r]:

kT

o [451]

o =

Sie

Although the superposition between thermal activation and viscous drag is more
complicated (e.g. eq. [33r]), the location of the minimum in the o~7T diagram can be
estimated by setting the positive slope due just to the drag mechanism (eq. [45r])
equal to the negative slope due just to thermal release (eq. [45p]). This gives approxi-
mately

Fooxp o @ V%
I_C—T ka_F;s }".

To estimate the last ratio on the right, we must compare velocities with release rates
and use

v =yP, = yvg 1
Yo
where y is the forward distance moved by a dislocation segment after thermal
release. Equations [42j] and [31f] give v¢ ~ v5/100b. Thus we obtain

F, ex F _1a
¥7 P kT = 100 b°
as the condition for the minimum.

Inserting the temperature [45q] into [45s), we see that phonon drag effects become
important at lower temperatures so long as ay > 2705%, i.e. for most realistic
obstacles.

On the other hand, to see whether such effects could ever be of practical interest,
let us insert the temperature T, from eq. [450], and take a typical value of /7, to be
10-1°, Then eq. [45s] would require

ay > 10'3p3,

[455]

Such a value is very unrealistic.

In conclusion, we find that an exponential decay of the stress with temperature
near T,, due to reverse jumps, describes high temperature processes sufficiently well.
For all obstacles that are spaced more than a few atomic dimensions, this decay is
so rapid as to be virtually equal to a kink.
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Summary

In this Chapter we show, with two examples, how the methods developed
in Chapters 2, 3, and 4 may be applied to derive the dependence of the macro-
scopic strain rate on stress, temperature, and structure parameters from
specific microscopic models. We are not especially concerned with whether
the particular model is a completely adequate description of the deformation
process; rather, we wish to point out the macroscopically observable conse-
quences that must ensue if it were. In this way, one may eventually be able to
distinguish between different mechanisms on the basis of macroscopic obser-
vations; conversely, one sometimes finds that different models lead to essen-
tially indistinguishable macroscopic behavior.

As an example of a linear barrier, we treat the lattice resistance to full
dislocations (““Peierls stress”) in sec. 51. There exist two common models: one
is based on the nucleation of a continuous bulge under a macroscopic line
tension; the other on the nucleation of an atomic-sized double kink. We give
new derivations and simple end formulae for both and find the results to be
similar, thus softening physical objections against either. Variational energy
principles are illustrated in the nucleation part of the problem; the kink
propagation part demonstrates the use of steady-state kinetics.

Isolated linear barriers of the repulsive kind were shown (sec. 24) to be
identical in their nucleation aspects to periodic ones; the results of sec. 51
should, therefore, be directly applicable. Attractive or energy-storing linear
barriers can also be treated by the bulge method; the results, however, are
significantly different (see secs. 24 and 43).

'The mobilization of screw dislocations in bcc metals—an important
thermally-activated process in these materials—is not treated explicitly. Screw
motion must be preceded by a change in core structure: a constriction normal
to the slip plane (sec. 27). If this activated configuration is retained for for-
ward movements of a few atomic distances at least, the process is formally
identical to the unlocking from an attractive linear barrier; if, on the other
hand, the dislocation merely progresses to the next possible low-energy
configuration, it is better described as a lattice resistance (pseudo-Peierls
stress). An important complication is the asymmetry between forward and
backward movement. We feel that, at present, no self-consistent and realistic
model has been established sufficiently-well to warrant presentation in this
article. The current status was reviewed by HirscH (1968) and by CHRISTIAN
(1970b); a more recent development is due to BASINSKI et al. (1971).

A precipitation hardened crystal is the prototype of a material with discrete
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obstacles. The element glide resistance, or local force-distance, diagrams for
various mechanisms are outlined in sec. 52, the method for their superposition
is derived, and the characteristics of the line and plane glide resistance are
given as a function of temperature. While the temperature dependence is
generally slight, it may be sufficiently strong at very low temperatures to allow
a macroscopic discrimination between various mechanisms. It is also strong
enough to significantly influence expected age-hardening observations.

" The mechanism of solution hardening presents some problems. An extension
of the precipitation hardening model to individual solute atoms may, at best,
apply to very dilute solutions when only interstitial solutes cause any appreci-
able strengthening. Randomly dispersed substitutional solute atoms do not
act as discrete obstacles when they are in concentrated solution, but interact
with a dislocation cooperatively. A model due to LABUSCH (1972) for coopera-
tive interactions of solutes with a dislocation, and applicable at absolute zero
temperature was discussed in sec. 25. The high-temperature behavior is, in
our opinion, not well enough understood to be discussed here.

The mechanism of forest dislocation cutting exhibits unusual complexities.
Forest dislocations can interact with glide dislocations to form attractive
junctions where small nodal segments of a dislocation can form to significantly
lower the local energy of the two.intersecting dislocations, making a thermally
assisted intersection nearly impossible. Alternatively the interaction between a
forest dislocation and a glide dislocation can be a repulsive one for which a
thermally assisted intersection is possible. In work-hardened crystals not only
are the points of intersection of forest dislocations with the slip plane nearly
always clustered into cell walls giving a distinctly nonrandom distribution, but
they can also be displaced significantly under the forces exerted by an imping-
ing glide dislocation. All such complex effects prevent us from presenting a
detailed model for forest dislocation intersections. In spite of this, a satis-
factory first-order approximation can often be had by considering forest
dislocations as a collection of fixed and randomly distributed point obstacles.

The macroscopic behavior of almost all real materials reflects the super-
position of effects due to many types of obstacles and mechanisms, and
occasionally also of effects due to drag and inertia. The superposition problem
is thus of major importance for any comparison of theory and experiments.
We summarize some examples of binary superposition in sec. 53. In general,
they involve many subtleties and lead to a large variety of results. However,
many practical cases are reasonably well described by one of the well-known
limits: additivity of the flow stress contributions; significant contribution only
from the mechanism that requires the higher flow stress (or furnishes the
lower rate); and additivity of the strain rates.

The procedure of the Chapter, namely to hypothesize a microscopic mecha-
nism and derive macroscopic consequences from it, is reversed in Chapter 6,
where macroscopic data are presumed given and the necessary or likely
properties of the underlying mechanisms are derived. '

There have been many detailed discussions of specific mechanistic models
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"antiparabolic potential”

FiG. 51-1. (a) The total free energy per unit length of a dislocation as a function of
the position y in a lattice of spacing A. (b) Limiting shapes of the Peierls potential
AZ pis. (The parabolic potential is not used in the following evaluations.)

i governing the glide resistance for dislocation motion. Of these we find the
i following limited selection most directly related to the mechanisms which we
; have discussed:

; ALEXANDER and HAASEN (1968), Dislocations and Plastic Flow in the Diamond Structure;
AsHBY (1970), The Mechanical Effects of Dispersion of a Second Phase;

Brown and Ham (1971), Dislocation-Particle Interactions;

CHRISTIAN (1970a), Plastic Deformation of BCC Metals;

FrIeDEL (1964), Dislocations;

Guyort and DoRrN (1967), A Critical Review of the Peierls Mechanism;

HirtH and LoTHE (1968), Dislocation Theory,

KEeLLY and NICHOLSON (1963), Precipitation Hardening;

OROWAN (1954), Dislocations and Mechanical Properties.

51. LATTICE RESISTANCE
The Mechanism

( In most crystalline solids the core energy of a dislocation undulates as it
! moves (PEIERLS, 1940; NABARRO, 1947): the slip plane appears to be energetic-
: ally rough (Fig. 51-1a). This periodic roughness has a wavelength equal to the

appropriate lattice spacing A and an amplitude, AF pis (the Peierls energy)
small compared to the total free energy, #ps, of unit length of the disloca-
: tion. Figure 51-1b shows two simple but useful approximations for the shape
of the Peierls energy: the “sinusoidal™ potential:

2

T

(1 — cos %{) [51a]

7
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and the anti-parabolic potential introduced by GuyoT and DorN (1967) (and
called “quasi-parabolic’’ by them):

AF pys = mx-% (1 —% ); O <y<A. [51b]

They are normalized to give the same maximum slope, #pb, where

A (des)
Tp = | ———
b dy /max

is called the Peierls stress: in our terminology it is the maximum element glide
resistance. (The results of models for lattice-resistance controlled flow are less
sensitive to the choice of a potential thus normalized than to potentials
normalized to the same Peierls energy—an observation first made by Guyot
and Dorn). For the two potentials listed above, the Peierls energy is, respec-
tively, :

AF bis = L"b'\ (sinusoidal potential) [51a']
ks
and
AF pis = TebA/4 (anti-parabolic potential). [51b]

The undulating free energy of Fig. 51-1 reflects two physical quantities: the inter-
action potentials of the atoms that make up the crystal, and the structure—prin-
cipally, the width—of the dislocation core. If the ideal shear strength, mipgar, is
high (say 1’/10, see KELLY, 1966) so that the dislocation core is narrow and of
order b, the motion of the dislocation can be thought of as distorting, breaking, and
remaking atomic bonds. The stress required to do this is the ideal strength 7ipgat.
But if the ideal strength is low so that the core is wide, serious distortion of bonds
occurs some distance ahead of, and behind, the dislocation. Regions exist which
contain bonds in all stages of being stretched, broken, and remade; and since these
regions are elastically coupled, the free energy increase of some is compensated for
by the decrease in others. Then, the maximum lattice resistance 7 may be consider-
ably less than the ideal strength. If the core is sufficiently wide, this coupling smooths
out the periodic lattice potential completely: apparently this occurs in fcc metals.
But in a much larger class of materials that includes the covalently bonded elements
and practically all inorganic compounds, the smoothing is incomplete.

In general, the maximum lattice resistance to the motion of a dislocation
. (the Peierls stress) is thus limited to

»
10
where p’ is the shear modulus in the glide plane and glide direction (see KELLY,

1966). This limits the Peierls energy—the amplitude of the energy undula-
tions—to a maximum value given by egs. [S1a’] or [51b']):

A*g’é'nls s %)}- [51c’]

[51c]

"
fp < TipEaL S

T
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Even for a high lattice resistance, then, the fractional change in energy as the

dislocation moves is still relatively small. We shall take, as typical orders of
magnitude

A‘g:DlS

DiIS

and ' [51¢”]

~ 10-2

A
Tp
[L

A sinusoidal shape is a logical choice for a first guess at the Peierls poten-
tial. But more detailed thinking suggests that the maximum should be flatter
than this: the ability of the dislocation to dissociate, for example, flattens the
peak while leaving the maximum slope (and thus #p) unchanged. So deviations
from the sinusoidal potential will tend towards the anti-parabolic, rather than
the parabolic potential (shown as a dashed line in Fig. 51-1b). Thus, in spite
of its unrealistic, sharp cusp the anti-parabolic potential is a useful limiting
case, and is mathematically convenient.

~ 10~2,

ridge

volley
(energy)

Fic. 51-2. Final configuration after double kink nucleation. This is never the critical
configuration.

How does a dislocation move through this energetically undulating terrain ?
The end result of thermal activation is that a sufficiently long segment of a
dislocation—initially straight and lying in an energy valley—now lies in an
identical position in the next valley; two full kinks (i.e. kinks of height )
connect it to the rest of itself, and, if the crystal is stressed, they move apart
(Fig. 51-2). But this is not the critical configuration: the configuration corre-
sponding to the energetic saddle point over which the system must pass to
reach the next valley. The main task of the following pages is to derive critical
configurations for all stresses, and hence the energy of nucleation of a bulge or
kink pair.

As a simple example, consider the limiting case of kink nucleation at very low
stresses. (See, for example, ALEXANDER and HAASEN, 1968; HIRTH, 1970). (Although
the forward dislocation does not lie past the next valley, as will be shown below).
Here, the critical configuration must tend to that depicted in Fig. 51-2: a pair of
full kinks of a critical spacing.- Two kinks interact such that the glide resistance
each exerts on the other is (sec. 24, eq. [24h7], Fig. 51-3):

T [s14]

P.M.5.—G
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Using eq. [41g], the low-stress limit for the activation free enthalpy is

4
AGnycL = b J‘ Aadr = FNUCL'{I - ,\/g‘}; fore >~ 0 [Sld']
7

o
where Fyucy is the free energy of the two isolated kinks; # is an upper cut-off stress

Int
T Kinks

A
T

Aa

F1G. 51-3. Glide resistance diagram for kink interaction. The total area under the
curve up to the upper cut-off stress ¥ ~ mpgay is the free energy 2Fmnx of two
isolated kinks in this elastic model.

where the ideal shear strength is approached. With this (somewhat arbitrary) cut-
off procedure, the total self energy of two kinks becomes

— 3/2 '
Frver = pb? A/i (2) ) : [Ste]
T ‘

It is the area under the curve of Fig. 51-3. Note, however, that the “‘core energy”
in this model, namely the part of the area (dashed box) affected by the cut-off, is
fully one-half the total area Fyucy.

1t is useful to have an estimate for the quantity Fyuce. In typical cases, the forward
lattice spacing A is about equal to b (or a little smaller), the upper cut-off stress # is
about equal to the ideal shear strength p’/20 (or a little smaller for kinks). Inserting
these values into eq. [51e] gives an upper limit

ub?

FrnueL S =3 : [51¢7]

In other words, the free energy of one kink (Fyuc/2) is about one-tenth of that of a

dislocation of the same length—a common order-of-magnitude estimate also
arrived at by methods that focus more on core energy than on elastic energy.

Kinks such as these exist in thermal equilibrium at reasonable temperatures.
Their average spacing along dislocation lines is of order

bexp {FKINK}
kT

where Fxmn is the free enthalpy of formation of a kink: Fyyci/2 in this model. This
spacing (for typical values of ¢ and b) is larger than 1 pm at room temperature and
Jarger than 1 cm at 150 K. Since this is more than the typical length of free disloca-
tion segments, nucleation of kink pairs under stress must be of prime importance in
real materials. We will treat it by two different models, in the next two subsections.
Subsequently, we consider the motion of the kinks thus generated.
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For a review of various models of the lattice resistance and of experimental
results, we recommend that by Guyor and DorN (1967). For background material,
we have made extensive use of the book by HIRTH and LOTHE (1968).

The Energy to Nucleate a Continuous Bulge

An alternative to the discrete-kink model—which neglects line tension,
replacing it by the kink-kink interaction—is the continuous bulge model. It
treats the nucleation step involved in the microscopic forward displacement
of a dislocation in the same way that a macroscopic displacement would be
treated—by the self-stress approach. The problem is further simplified if long-
range interactions between segments of dislocation are neglected: then the
self-stress becomes a local property of the dislocation, and expressible as a
line tension. Let us in addition assume for simplicity that the line tension is
orientation independent and equal to Fps; the small contributions from
AZ s can be neglected.

Under such circumstances, as we have seen in sec. 24, the dislocation will
take up varying local curvatures in response to the stress. Starting from a
straight dislocation at the position y, where it is in stable equilibrium under
the applied stress o, given by:

= o) = 51f
b oy TeLem(Ve) = © [51f]
it will accumulate an angle B to the x-axis, which is given as a function of y by
y
B> fTELEM(y,) —C
== | b dy; (5) = 0. 51
> o CEN [Sle]

Yo -

This is an adaptation of eq. [24¢’] for y, # 0, for a constant line tension
Fois, and for B < 1. Integration of the right-hand side, as in eq. [24f'], leads
directly to :

By = 2270000 [s1g']

where the lattice free enthalpy per unit length of dislocation is

AGps = AF ois(y) — AF pis(Vo) — ob(y — ¥o). [51g"]

Equation [51g’] describes the equilibrium shape of a bulge on the dislocation
line. '

The activation free enthalpy for the nucleation of such a bulge is
AGnycL = Fis f (d¢ — dx) + f {A-?"Dls(y) — AF pis(yo)} dé
—ob [(r—y)dx [51h]

where d¢ is an element along the dislocation line, and the integration extends
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over the entire length of the dislocation. The first term in eq. [51h] describes
the rise in energy due to the increase in length of the dislocation line; the
second that due to the increased line energy of the dislocation elements in the
bulge; and the third term is the work done by the applied forces in forming
the bulge. ,

Since all integrands are given as functions of y, let us transform the differ-
entials d¢ and dx to dy, and make an approximation for small angles 8 in the
process. The nucleation energy becomes

AngS dy

5 »
B
AGnycL = 2F pis fi dy +2 f B

. Yo Yo

[51h]

Here, y is given by the condition that 8 = 0 (where the bulge reaches its
maximum at A% ;5 = 0, see also sec. 24). Inserting the equilibrium value of
B from eq. [S1g’] gives the simple result

' 9
MGy = 2Fpis* [Bdy |5 BU)=0. [s1i]

Yo

For an evaluation, one needs egs. [51f], [51g’], and [51g"].

This model was first treated fully by DorN and RAINAK (1964). Their result
looks more complicated than ours only because they did not make a small-
angle approximation—one which is obviously justified by egs. [51c’] and
[51g']. Furthermore, they did not use the equilibrium condition [51g] for the
shape of the bulge, but instead determined it by a variational method applied
to the general equation [S1h] or [51h’], a procedure which is equivalent to
rederiving the equilibrium conditions.

Application of eq. [51i] to the sinusoidal potential [51a], using eq. [S1f] and
the definition

YEy—yo

X — l arcsin ; [513]

m Tp

>

gives for the bulge nucleation energy

AGNUCL = 2\/2‘7DIS * '?'PbA * A ¢

. _
of A/ZLW {/f(y B °°S[2"Y+ arcsin(,f)]} - ;11, Y-dY. [51j]

Tp

The integral was evaluated numerically; the resulting AGnycL(o) relation is
plotted in Fig. 51-4 (upper curve). It appears to be identical to that published
by DorN and RAINAK (1964) as it should. (The activation energy AGxycy is
plotted horizontally: in this way, Fig. 51-4 may be interpreted as a flow-stress
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T *>AGyueL
“Fruct

FiG. 51-4. Stress versus activation energy for bulge nucleation, from the sinusoidel
potential (upper curve) and from the anti-parabolic potential (lower curve). (See
: Fig. 51-1b.)

versus temperature diagram at constant strain rate, for the case that bulge
nucleation is in fact rate controlling.)

The shape of the anti-parabolic potential (eq. [51b]) traps the dislocation in
a way which is unperturbed by small stresses. For this potential, then, y, =0,

, .
Y==x 51k
: [51k]

and

v

P

?
AGnycr = 2V2F pistebA -2 J. A/(1 - ,.1) -Y — Y2dY  [51k']
S T
which can be integrated in closed form and gives

A

Tp.

2
AGNUCL = FNUCL' (1 - i) . [51k"]

This relation is plotted as the lower curve in Fig. 51-4. It is seen that the final
results are not very dissimilar for the two drastically differing potentials. The
total activation free energy, Faycw, for the anti-parabolic potential, is defined
by eq. [51k']; it is

. 4 s ;‘P— A\ 3/2 . .
Frnuer = AGryer(fc = 0) = - -ub?- ; 7 (anti-parabolic pot.) [51L]

For the sinusoidal pote'ntial the result (from eq. [51j']) is
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2 3/2
Fyuer = AGnuc (o =0) = -—j— ~ub3- . (é) : (sinusoidal pot.) [51¢]
w32 po\b
These energies may be compared to the free energy [Sie] of a full double kink
in the elastic model: they are identical in form, but about one-third larger in
magnitude. ‘
This similarity is the more surprising when the critical geometry is examined.

- — — — — — - — — —%—energy
valley I
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F1G. 51-5. Actual shape of bulges in sinusoidal potential for three stresses, using a
constant line tension and a Peierls energy of 1/100 of the line tension. The y-scale
is magnified 40 times with respect to the x-scale.

The gradual “kinks” of the bulge model are quite unlike the sharp steps of the
kink model. Figure 51-5 shows the actual shapes of bulges over the sinusoidal
potential, at 10%, 50%, and 90% of the Peierls stress, as derived from the
relation 8(y), the integrand in eq. [51j'], using for the order of magnitude eq.
[51c”]. Note that the y-axis is expanded by a factor 40 as compared to the
x-axis. One can hardly call these shapes “double kinks, though in the limit of
zero stress the shape does degenerate to two distinguishable kinks—smoothed
though they are. (See also the construction in Fig. 24-4.) At any finite stress,
the line tension makes the dislocation turn back before it has reached the next
valley.

The application of the line tension approximation to changes on the atomic
scale is obviously questionable. For this reason, the alternative double-kink
model is developed further in the next subsection, where it is shown that in
spite of geometric differences, the energetics of the kink and bulge models are
very similar.

The Energy to Nucleate a Pair of Discrete Kinks

The bulge of Fig. 51-5 is sometimes called a “double-kink”’—a confusing
terminology because the individual kinks cannot be distinguished. There is an
alternative model geometry that truly consists of a pair of (discrete) kinks, as
illustrated in Fig. 51-6a. It is sometimes preferred as a basis for calculating the
Peierls stress, because it does not presuppose the applicability of a line tension
model on an atomic scale—indeed, it implies the breakdown of line tension
concepts, since they always lead to kinks so shallow that their discreteness is
lost.
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(b)

Fic. 51-6. (a) A pair of discrete kinks in a dislocation under the influence of a

Peierls potential A% pis. Their spacing # and height 4 in equilibrium under an

applied stress o are derived, assuming w <€ #; the value of & shown here already
reflects the result. (b) The Peierls free enthalpy.

When, for atomistic reasons, kinks are narrow—that is, when the kink
width w (Fig. 51-6a) is small compared to the kink spacing &':

A [51m]

—then the following model applies. The spacing ¥ of a pair of kinks in the
critical configuration can be derived by the method outlined below: it is 10A
or larger for all stresses (where A is the period of the Peierls potential). Such a
model, then, might realistically describe the behavior of covalently bonded
crystals, in which kinks are likely to be narrow (i.e. w equal to a few atomic
spacings at the most).

The parameters (Fig. 51-6a) of the double-kink model are the kink spacing,
%, and the kink height, h; w is considered to be constant. Previous treatments
have assumed / to be either the full Peierls period A, as in Fig. 51-2 or (more
often) given by the assumption that the advance dislocation piece must be in
an unstable equilibrium position on the Peierls potential; these two positions
of the advanced dislocation are marked A and B, respectively, in Fig. 51-6.
We shall show that they are limiting cases, asymptotically approached at low
and high stresses respectively (although the point A is never beyond the next
valley as it appears in the figure).

In general, % and i must be treated as internal parameters whose equilib-.
rium values can be found by varying the free enthalpy at the given stress with
respect to both. Let us call AG{ycp the free enthalpy associated with a kink
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pair of arbitrary height 4’ and spacing .#’. (We shall use the unprimed
symbols to describe the critical configuration.) Then AGyycy, is given by

AGruc, = &' {AF pis(yo + 1) — AF pis(v)} — obh' L + 2F (W)
~ Fanks(t', £). [51n]

The first term is the difference in free energy of the piece of parallel dislocation
in the ground state at y,(c) and the (tentative) activated state advanced by #';
the second term is the work done by the external forces; and the last two to-
gether are the free energy of the kink pair. The kink interaction energy is
frequently neglected; we shall comment on its influence below. Inserting its
well-known dependence on 4’ and % with an approximate proportionality
factor, from eq. [24h], and inserting the Peierls free enthalpy A%,s defined
in eq. [51g"], eq. [51n] becomes

A ’ ’ ’ r l‘bz (ll,)2 ’ 4
G'xver = &A% pis(R', 0) + 2Fen(h) — S— a [51n’]
10 &

This free enthalpy of a kink pair is plotted in Figs. 51-7a—c for three values

of the applied stress, using the sinusoidal potential [S1a] with 7 = /100,

A = b, and using a kink-self energy to be discussed below (eq. [51t]). In the
» figures, one can recognize the basic features of the Peierls potential: the
general increase of free enthalpy in the A’-direction as the kinks grow in height

(a) Z:0.1
T

®

FiG. 51-7. The free enthalpy AG'nucL, over that of a straight dislocation in equi-

librium under a stress ¢ in a sinusoidal Peierls potential, of a piece of dislocation of

arbitrary length #’, that is advanced by an arbitrary distance 4’ and terminated

by a pair of discrete kinks (egs. [S1a], [51g"], [S1n’], [51s], [51t]). Figures a, b, ¢

are for three ratios of the applied stress o to the maximum element glide resistance
e (the Peierls stress at T = 0 K).
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(b) -F=05
ki

[TFFTT T,
1T
]

F1G. 51-7 (cont.)

(which vanishes as £’ — 0 because of the kink-kink interaction); and the
general lowering of free enthalpy due to external work as both %’ and /'
increase. .

The ground state of the dislocation is at the origin of the figures. The
configuration after successful activation must be in the valley as ' ~ ) at
large values of £, which values increase as the kinks continue to move apart:
there is no final stable equilibrium configuration. The critical equilibrium
configuration (the “activated state”) is between these; it is a position from
which AGLycL continuously decreases both towards the initial and the final
states.
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The critical configuration is marked by a cross in each figure. It was ob-
tained by solving numerically the equilibrium conditions

aAG,lecs
3P o | =0 [Slo]
forh' =h &' =2,
, aAG'NJr, ~0 [510']
o' | &L e

For the small stress in Fig. 51-7a, the critical configuration is a true saddle
point, the equilibrium being stable in the A’-direction and unstable in the
@#'_direction. At the intermediate stress in Fig. 51-7b, the equilibrium is
neutral in the #’-direction. Finally, at the highest stress, Fig. 51-7c, the critical
configuration is in unstable equilibrium with respect to both A" and Z’ (but
of course in stable equilibrium with respect to all other internal parameters).
Thus, the phrase “saddle point” for the critical configuration may sometimes
be misleading. _

The result is especially simple when the kink interaction energy (the last
term in eq. [51n’]) is neglected. Then AGiuce depends on #’ only linearly
through the first term. The differentiation according to [510] requires that the
Peierls free enthalpy of the advanced dislocation piece be zero: when the
separation of the kinks is increased, the work done is just enough to provide
the increased line energy of the advanced dislocation piece. The free enthalpy
of nucleation AGnycy, is then merely the energy of the two kinks:

A% =0-—>h
pIs ©) (neglecting kink interaction). [51p]

AGnycL = 25, KINK(h)' [51p]

Equation [51p] specifies that the position of the advanced piece of disloca-
tion is at C in Fig. 51-6a. This may, at first sight, seem surprising, since here
this dislocation is not in equilibrium with respect to forward displacements (as
it would be at A or B). But performing the differentiation [510'] on eq. [51n']
shows that indeed there must be a forward force on the advanced dislocation
to balance the “kink tension’ at both ends:

dF, :
Lh(o — rerea) = 2 (—d;:ﬁ) [51q]

This equation determines the critical value of £. It is large for both high and
low stresses, and smallest for intermediate stresses, as may be seen in Figs.
51-7 for the sinusoidal potential. (Actually, in this figure, the kink interaction
was not neglected, but its effect on & (as on AGnycy) is minor compared to
that expressed in eq. [51q].)

Figure 51-8 shows the critical configurations derived for three stresses under
the same conditions that were used to derive Figs. 51-7. The width of the kinks
was arbitrarily set to w = 5A. These shapes should be compared to the bulges
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in Fig. 51-5 (although, for clarity, the scales are different). They have an
important feature in common: the maximum excursion to where A%ps=0
is the same in the two figures. Clearly, the detailed assumptions concerning
the line energy are not too important. In the kink model, the advanced piece
of dislocation is treated as rigid, held back by the pull of the kinks at the ends;
in the bulge model, it is treated as flexible, so that, to be in equilibrium, it
must everywhere acquire a backward curvature; but these detailed differences
apart—the two models lead to similar critical geometries.

] ——————————————————————— <—energy valley

{w = 5X, arbitrary)

FiG. 51-8. Critical configurations in the discrete kink model (arbitrarily setting
w = 5}) for three stresses, using a sinusoidal Peierls potential (as for Fig. 51-7).

The height 4 of the kinks in the critical configuration follows from eq. [51p]
—though, of course, it depends on the shape assumed for.the Peierls potential.
The anti-parabolic potential [51b] is especially easy mathematically, in part
because y, = 0 at all stress. It follows immediately that

h

112, 5
X y [51r]
For the sinusoidal potential [S1a], one must first determine y, (o). from
: dAZF,
bo = brpis(y,) = Tms. [51s]
y

Inserting this into [51g"] and applying [51p] gives for A(o) the transcendental
equation

— .
2%T{A/l - (:-P) — €os (272 + arcsin;)} — ;T_l_; =0. [51s]

Tp P

A numerical solution of this equation for 4/ differs, over the entire range, by
less than 2% from the equation

h__A/l -
I Ny [51s"]

which is an adequate approximation for further calculation.

~
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The value of 4 from [51r] or [515"] must now be inserted into the kink energy
to obtain the activation energy for nucleation according to [S1p’]. Here lies
the major difficulty of the kink model: the dependence of Fynk on A. We
have seen in [51¢] that a model based purely on the elastic interaction between
kinks gives Fxmx o h3/2, with a very crude assumption concerning the core
energy, which contributes about half of the total energy in the case of kinks.
More sophisticated calculations of the core term are based on the self-stress
model (where a double kink is a bulge) and are inappropriate in the present
treatment. If the core energy—which is presumably proportional to h—were
known, one would have to add to it the elastic free energy, which is propor-
tional to k2 (as can be seen by integrating eq. [51d] between distance rather
than stress limits). '

Lacking anything better, we shall use, from eqs. [51e] and [S1¢”],

b3 h 3/2
2Fxmnk "1_0 (X) . [51t]
This leads to a kink pair nucleation energy of
b3 3/2
AGnyerL = pi_O (1 - 1;(_7-) [51u]
P

for the anti-parabolic potential (egs. [S1b], [511]), and

s~ 1/273/4
AGnuaL = % [1 - (;) ] [51u]
TP

for the sinusoidal potential (egs. [S1al, [51s], [51s"]). These relations are
plotted in Fig. 51-9 a and b, together with the previous results from the bulge
model. It is seen that the differences are relatively minor. Whether the positive
curvature of the solution for the sinusoidal potential near ¢ ~ # is meaning-
ful may be doubted in view of the uncertainties connected with eq. [51it].

Figure 51-9b contains one extra curve (dashed), which was calculated numerically
by including the kink interaction energy in [SIn]. The difference is slight; and the
behavior near ¢ =~ 0 is as demanded by eq. [51d’]. The equation for the nucleation
energy, in this complete model, is worth noting:

AGnucL = 2FxiNng — 2F}J{'§KS. [51p”]

It comes about because of the particular form of the interaction energy as shown
in the last term of eq. [51n"]: the differentiation with respect to %’ accordingto
[510] then gives

Apis = — Fllggxs

in place of [51p]. The critical position of the advance dislocation piece is somewhat
to the right of C in Fig. 51-6, and the value of % is somewhat larger, than when the
kink interaction was neglected.
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ANTI-PARABOLIC
v\ PEIERLS-POTENTIAL

—»v/ép

~——KINK MODEL
————(WITH INTERACTION)
—BULGE MODEL

|

/\ SINUSOIDAL
PEIERLS-POTENTIAL

-——a‘/ﬂ,

——+ AGyycL /FuyeL

Fic. 51-9. Stress versus activation energy for (a) anti-parabolic, and (b) sinusoidal
potential, in the kink ( ) and bulge (——) models. The effect of elastic inter-
action between kinks is shown for the sinusoidal potential (- - -).

The Nucleation Rate

In the preceding sections, the activation energy AGyyc.. for nucleation over
a linear barrier was derived in two different models for two different Peierls
potentials that we consider to be limiting cases. Though based on different
premises, the results were very similar: the stress dependence of AGyycy, for
instance (Fig. 51-9 a and b), is similar in all cases. Figure 51-10 summarizes
the range of reasonable relations as a shaded area. It also singles out a central
curve that may be regarded as a good phenomenological description:

A

A\*p

3/474/3
AGnycL = FyucL [1 — (i) ] . [51v]

For the upper and lower envelope of the shaded area, the same general
relation (eq. [43w]) was used, with the inner exponent p and the outer expo-
nent q being £ and 1, respectively, for the upper envelope, ¥ and 2 for the
lower envelope. (Only the relation [51k”] lies slightly outside the lower
envelope at high stresses.) The total activation energy is in all cases (egs. [Sle],




43
AGnycL * FrueL ” [‘ - (‘—f )3/4]
Tp

T AGyycL
FrnucL

FiG. 51-10. The range of reasonable relations for the activation energy AGnuci(0)

of nucleation over a Peierls barrier, and a central phenomenological relation (eq.

{51q]). With one exception, all published models (as reviewed by Guyor and

Dorn, 1967) fall within the shaded band; the exception is that of SEEGER (1956),
which lies off this diagram to the right.

[51¢), [512']) close to

»
3 A
Fawe = 2 22, (51v']
2 Np

To calculate a nucleation rate one needs, in addition, a frequency factor. It
may have one of two extreme forms: the first relates to the frequency vnuct
with which a straight dislocation “‘attempts” nucleation; the second is deter-
mined by a resistance to motion of the kinks across the (rather shallow)
“saddle-point” area. The following paragraphs describe these two limiting
cases in more detail, and discuss their dependence on stress, temperature, and
structure.

First, consider the “attempt frequency”, vaycr, Of @ straight dislocation
segment. In calculating the critical geometry, it was found that the length &
~ of the critical segment was always large compared to the atom size (=10b).
So it is not unreasonable to use the vibration frequency of an infinitely long
dislocation in front of a linear barrier, corrected for the possibility of coupled
lateral translation rather than spreading of the resulting double kink, as it
was derived in eq. [42v]:

YNUCL = WATOM A/ 2UK|NK,|:d("' ELEM/P‘,)]
N kT L dom) b

For the internal energy 2Ugnk of the double kink (which enters because of

[51w]

=Yo
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its mass) we may substitute its free energy 2Fxnk (Which does not contain
any configurational entropy terms). For a double kink of the correct height
in the critical configuration (eq. [51p’]), this is just AGnycL(o).

The last factor in eq. [51w] is the normalized stiffness of the Peierls potential
for the unactivated dislocation at y = y,. For an order-of-magnitude estimate,
we may set it equal to the initial stiffness in the sinusoidal potential, (eqs.
[51a], [51f]), (#,/n") - (2wb/A), which should be good up to o ~ Tp/2 Then eq.
[S1w] becomes

AG 2 ,
VNucL & @atoM A/%;L% [51w']

The activation energy AGyyc for kink nucleation under stress is of the general
order of 30kT in the range where this nucleation is of interest for most macro-
scopic applications (eq. [S1ii]). For Peierls stresses of the order of /100,
vauce, 18 thus between 10'° and 101! s—1, approximately.

The frequency factor [51w] depends, in principle, on the instantaneous applied
stress o, because with increasing stress both the stiffness and the activation free
enthalpy AGnucL become smaller. For the sinusoidal potential, the effect of both
can be combined; the result of plotting this out is an approximately linear depend-
ence of vyyce On o (eqs. [51a,][51f,] and [51g] combined with eq. [S1w']):

F A\ S/a
VNuCL & wa A/%T (g) .(1 — ;1) [51w7]
P

If this frequency factor controls the activation kinetics, the rate of nuclea-
tion at any particular site becomes

AGNUCL.

P, = "NUCL'CXP - T

[51x]

Note that a correction for “reverse jumps” is not applicable to this formula:
there is no stable equilibrium configuration after nucleation, from which such
a nucleation against the applied stress could take place. (See, for example,
Fig. 51-7)

When kinks move slowly, a different frequency becomes important. Reverse
jumps of a sort may take place from the “saddle-point™ area if the kink is not
rapidly removed from there. This is particularly evident when there are
subsidiary energy ripples over which moving kinks must propagate (Fig.
51-11): when the ripple spacing x is less than the width of the saddle point
(which is of the order of the length & of the critical configuration) then these
barriers to motion influence nucleation. Closely spaced (weak) solute atoms,
will produce such an energy ripple; so, too, will a “second-order Peierls
stress”’—a periodic variation in the core energy of kinks. One must keep in
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mind, however, that the finite width of kinks tends to average over variations
of a smaller wavelength.

" The net forward motion over small-scale variations such as the ripple
shown in Fig. 51-11 can be described (in the manner of eq. [45j]) by an average
kink velocity

obAx .exp — AGPROP

T [51y]

UkINk = XVp*©

free enthalpy

reaction coordinate

FiG. 51-11. Double kink nucleation when there are obstacles to kink propagation
whose spacing x is smaller than the length & of the critical configuration.

where we have assumed that the attempt frequency for kink motion is the
Debye frequency vp. The effective frequency factor for nucleation then be-
comes the reciprocal of the time it takes for the kink to traverse the “saddle-
point area” at that velocity, in the picture used by GLASSTONE et al. (1941) in
their derivation of “Absolute Rate Theory™:

v AG
P, — JKINK oy NUCL 51

T P Tar 3iz]
or, introducing a proportionality factor g of order 1,

U_I‘ba . _ AGnycL + AGpgror
n kT kT '

[512]

This equation may formally apply even when AGprop = 0 and the kink
velocity is controlled by a drag mechanism linear in ¢, such as phonon drag
(eq. [311]). In that case, one no longer has a succession of equilibrium states,
and the derivation of eq. [512’] is based on the diffusion theory of nucleation,
or on the incorporation of the “Zeldovich factor” (HIRTH and LOTHE, 1968).

Equation [5lz] replaces eq. [51x] when it leads to a lower value of P,.
Comparison of egs. [51z] and [51w’] shows that this can happen for
AGprop = 0 only when o < #5/100, in order of magnitude. But when AGpgop
is at least a few kT, eq. [51z'] should almost always be relevant.

Steady State of Free Slow Kinks

If a kink, once nucleated, is not impeded by any obstacles other than the
drags or quasi-drags described above, it will ultimately collide with a second
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kink of opposite sign. Assuming the inertial effects of sec. 31 are absent, the
kinks annihilate each other. The mean free path of a kink, 4, is then deter-
mined by a steady-state balance between nucleation time and travel time:

1 4
(ZA/b)Pz UKINK

[51aa]

Here, the factor 24/b on the left-hand side describes the number of sites for
nucleation along a piece of dislocation of length 29( (b appears in the
denominator because the nucleation frequency was arbitrarily chosen in
eq. [42v] to refer to a length b of dislocation).

Solution of eq. [51aa] for 24, with [51z] for P, gives

A ~bexp 20nue [51bb]
KT

It is the steady-state spacing of individual kinks at the stress o. For all inter-
esting values of AGyyc (AGnycr > 15kT) its magnitude is in excess of 10*5.
Most real materials contain structural obstacles (dislocations, precipitates,
etc.) which are more closely spaced than this—so it is these obstacles, not the
steady-state kink population, that determine the mean free path of a kink;
this we treat in the next section. But in very “clean’’ materials, where 24 in
eq. [51bb] might be smaller than the spacing of structural obstacles, the

“average dislocation velocity follows directly from egs. [Sly] and [S1bb]
B ~1:

, ob? }AGnyceL + AGepor
v = P = p Vg — €Xp —
pis = — kv = B'Us T p T

[S1cc)

—a typical drift velocity of individual kinks. It leads to velocities consistent
with vk S 107305 (no inertial effects) only when AGpgop is substantial.
For such quasi-viscous motion, the macroscopic strain rate follows by
multiplying eq. [5lcc] by b times the mobile dislocation density pn. In the
absence of other obstacles, p,, may be influenced by the elastic interaction
between mobile dislocations as described in sec. 32. Under certain conditions,
this can bring/\ additional o>—dependence into the pre-exponential factor .

Strong Obstacles to Kink Motion

We have pointed out that the mean free path of kinks on infinitely long
dislocations is generally in excess of 10%b. Yet free dislocation segments of
such lengths are not usually available because of the presence of other
obstacles that are too strong and too sparse to be smoothed out into a quasi-
drag. The prototype of a strong obstacle to kink motion is a node in the
dislocation network; but internal stresses, precipitates, or especially strong
(interstitial) solute atoms could be equally effective.

VZA
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A kink will be stopped at such an obstacle; the calculation of the disloca-
tion velocity then becomes a problem in the superposition of two strengthen-
ing mechanisms (CELLI ef al., 1963 ; RyBIN and OrLOV, 1970). As further kinks
sweep in from either side of the obstacle, a “’kink pile-up”’ forms. As the num-
ber of kinks grows, the geometry of their distribution, as well as their stress
field, become identical to the effects during the bowing-out of a smooth
dislocation between the obstacles. Thus, the dislocation curvature stress must
be subtracted from the applied stress in the activation energy for nucleation
on such a segment. Conversely, when the double-headed kink pile-up exerts
sufficient force on the obstacle—or, equivalently, when the cusp angle at the
obstacle due to dislocation bow-out has reached the critical value given by the
obstacle strength—the obstacle breaks and a large number of kinks of opposite
sign can annihilate rapidly. The area swept out by the dislocation is then
essentially that prescribed by the obstacle distribution.

The nucleation time for the first kinks (when the back stress is still small) is
trivial compared to that for the last critical kink (when the back stress is a
maximum). So one may write the macroscopic strain-rate in the form

y = b'aoss'NNUCL [51dd]

where Nyycw, the nucleation rate per unit volume, is evaluated at (o — 7825 nE),
and aqgs is the average slip plane area per obstacle. In addition to P,, which
was derived earlier, it contains the number of available sites for nucleation.
This is equal to the number of mobile dislocation segments per unit volume,
N, times the number of nucleation sites per segment, //b (! = segment length).
Thus we have

NNUCL = Nm'%'Pt- [S1ee]

The product of the mobile segment density N, in eq. [Slee] and the area
aops in eq. [51dd] must together be equal to the reciprocal of the slip plane
spacing d, for long-range slip (Kocks, 1970b, see sec. 33). The slip plane
spacing, in turn is proportional to /, when it is demanded that mobile disloca-
tions on parallel slip planes can just pass each other at the flow stress (eq.
[33cc]. Thus the various dependences on / in eq. [51dd] just cancel each other
and we have, in order of magnitude,

y ~ P, [51ff]

as it was given in eq. [S1x] or [512}, with an “effective stress’” (¢ — 79P{NE)
inserted instead of the applied stress o.

This formula should hold even when the overcoming of the obstacles can
also be aided by thermal fluctuations since, by virtue of the arguments
presented in eqs. [44v] through [44y’], the waiting time in the critical con-
figuration should be the same for both mechanisms (though the neglect of the
bow-out time in eq. [51w] may be more serious here). Observation of the total
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effective activation area as the obstacle density is varied, in a diagram of the
kind shown in Fig. 44-13, would then help separate the two contributions.

In this model, we have assumed explicitly that the obstacles are far enough -
apart not to interfere with the nucleation mechanism. The length of the critical
configuration can, however, be quite large both at very high stresses and at
very low stresses. Then, the critical shape is influenced by the finite available
length. The forward piece of dislocation may even advance as far as the next
equivalent stable equilibrium position and then a second bulge may already
be part of the critical configuration. This class of problems, discussed most
recently by ONo and SomMER (1970) will not be treated here.

Macroscopic Characteristics of a Lattice Resistance

We now summarize the model results in terms of the phenomenological
Arrhenius relation

Y = Yo €Xp — aG
° kT

Realistically, structural obstacles almost always limit the travel of a kink.
(Only in the purest and most perfect crystals is the obstacle spacing greater
than the mean free path of a kink.) Accordingly, we adopt eq. [S1f] with the
nucleation rate given either by [51z'] or [51x] and [51w’]. In these cases, we
have in order of magnitude

. 7p . ob3

X wp— O o = Wy t—. 51

Vo = war ¥ AT [51gg]
Either way, the preexponential factor has unusually large values for interesting
stress ranges:

Y, 2 101051 [51hh]

so that for a typical strain rate of 10~*s~7,

In (7./7) R 30. [51ii]

Only in the case of slow free kinks, where eq. [Slcc] holds, would y, be
smaller; its order of magnitude would be as in [51gg], multiplied by b2p,,. The
term In (y,/7) is then about 20 as in most other mechanisms.

If the activation energy is primarily determined by nucleation (eqgs. [51ff]
[51x], [SIW'D—as it is when kink travel is obstacle limited—its value at zero
stress is approximately (eq. [51v])

b % )
; F, = FyyoL gy .4 [5133]
% 2 Ne
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To this may have to be added any total activation energy of motion (in case
eq. [51z'] applies). For free slow kinks, F, would be half the value in [51jj] but
in that case, a substantial activation energy of motion must exist. We shall
use eq. [51jj] for a general estimate of the lattice resistance mechanism. Since
(eq. [51c]) the maximum Peierls stress must certainly be less than u/20, we have

3
F, 5 ’i [51kk]
10 ‘
If one inserted, as a general average for metals (Table 2-I), ub® ~ 5 ¢V,
one would obtain, with eq. [51ii],

T, = _L
k 1n (y,/7)

Furthermore, #, is usually substantially less than p/20, so that, “in the
average”, the lattice resistance provides at best a very low-temperature
mechanism.

On the other hand, the lattice resistance contributes in an important way
to the flow stress of materials with highly covalent binding character. For
these materials, #, may approach /10 and, in addition, b is often much
larger (Table 2-1): for diamond, for example, ub® ~ 56 eV and thus T, ~
3500 K.

The apparent activation area for nucleation is plotted in Fig. 51-12, for our
average phenomenological relation [51v] and for two extreme relations,
including the rather unrealistic one of bulge nucleation over an anti-parabolic
potential. It is not likely that they could be clearly distinguished experiment-
ally. The general order of magnitude can be estimated by setting

< 200K. [51¢¢]

, —
Ad' = — BA_G %~ é_ . ﬁ [51mm]
do b?p 2 7p

It is normally of order 1052. The stress dependence of any activation energy
of motion should be negligible by comparison.

The relative stress sensitivity of the nucleation energy is, when there are
other obstacles (eq. [51ff]),

bAad'
mg = T ‘(0 — 7REANE)- [51nn]
In a typical experiment, the temperature and the stress are not independently
prescribed. Let us express the “effective stress” term above in terms of AG
(eq. [51v], or more generally eq. [43w™), which then relates to temperature
and strain rate by the Arrhenius law. This gives

mg = pq [(%)m — 1] ‘In (70/7). [s;oo]
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/T

, Teb ENY )
—» Ad- FrevVE
Fic. 51-12. Apparent activation area Aa’ = —dAG/bdo, against stress, suitably

normalized, for “average” (p =1, 4 = 4) and limiting forms of the activation
energy AG(o) of “double-kink” nucleation.

Mg
In{¥/7)

F1G. 51-13. The relative inverse rate sensitivity of the flow stress, m, at constant
strain rate, as a function of reciprocal temperature. The values of q refer to the
outer exponent in the phenomenological expression for AG(o); the inner exponent
‘ p was chosen as 1/q. Allcurves forq > 1 may be mistaken for straight lines through
the origin over a substantial range of temperatures.
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This relation is plotted in Fig. 51-13, for various values of q and for p =
1/q. An interesting conclusion from this figure is that, over a substantial range
of temperatures, the curves may be mistaken for straight lines through the
origin—which, if it were exactly true, would imply a logarithmic dependence
AG(s). Such a dependence had been predicted in the least realistic of all
Peierls stress theories (SEEGER, 1956; see, for example, GuyoT and DoORN,
1967), and had been “confirmed” experimentally by PREKEL et al. (1968) (see
Kocks, 1970c). We see that such a plot is not a sensitive test of any particular
theory.

With respect to the order of magnitude, we see that mg = 10 at 7 < T,.
In the higher temperature range, it becomes important to include any stress
dependence from y,. This appears when a (quasi-)drag acts on the motion of
kinks, or when the density of mobile dislocations is only determined by their
own interaction. All effects together can at most lead to a contribution of 3
to m from the preexponential. In terms of the curves in Fig. 51-13, this
corresponds to any upward displacement by at most 0.1 (eq. [51ii]).

Summarizing, the characteristic orders of magnitude for a lattice resistance
mechanism are: a low activation energy of about u3/10, an apparent activa-
tion area of order 1052, an m-value of order 10, and possibly a high 7,-value
(in excess of 10'° s~1). None of the functional relations of these parameters
on stress are characteristic enough to discriminate between different reason-
able detail assumptions in the model—or, for that matter, to distinguish the
lattice resistance from any other “‘short-range” flow stress mechanism.

52. PARTICLE RESISTANCE

As a prototype of discrete obstacles to dislocation motion, we treat here
particles of a second phase coherently embedded into the lattice of an other-
wise pure crystal. There are many physical mechanisms by which such precipi-
tates resist the motion of dislocations. In many cases several mechanisms are
operative simultaneously. A meaningful theory of precipitation hardening
must, therefore, cope with the problem of superposition, which is non-trivial
except in very special cases of “point’” obstacles. The distinction between the
element, line, and plane glide resistance introduced in Chapter 2 provides a
sound basis for dealing with this problem.

Some mechanisms of interaction between precipitates and dislocations
extend beyond the physical limits of the particle. At high concentrations, the
precipitates may then interact with the dislocation cooperatively rather than
individually; i.e. the obstacles are not truly “discrete”. Such problems require
dealing with more complex motions of a dislocation discussed briefly in
sec. 25. ‘

In order to demonstrate the method, we shall treat a specific case, using
precipitates of an idealized geometry and with somewhat idealized inter-
actions. In any real case, one must judge how closely these idealizations
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correspond to reahty, or modify the method outlined here to account for the
differences.

The geometry to be considered consists of particles that intersect the slip
plane in circles of diameter w. This diameter and all other properties as they
are experienced in the slip plane are assumed to be identical for cach particle.
Particles whose three-dimensional properties are identical would, of course,
exhibit a spectrum of properties in the slip plane. We idealize such a spectrum
by a distribution of uniform “average’ or “effective’ particles. The remaining
statistics would change the numerical constants of the results, but not their
form (FRANK, 1968; FRANK et al., 1968; FOREMAN and MAKIN, 1967; HIrRTH,
1970; BRowN and HaM, 1971).

The spatial distribution of particles in the slip plane is assumed random:
this is the only nonregular dispersion that has been described sufficiently well.
We also neglect corrections necessary when the average spacing / is not large
compared to the size w; they were given in sec. 25 for non-interacting particles.

For the interactions, we assume that macroscopic concepts such as- line
energy, interface energy, etc., are applicable even for rather small precipitates.
In fact, at the end of this section, we shall discuss the common extrapolation
of some of the precipitation hardening mechanisms to the interaction of
dislocations with individual solute atoms in dilute solution. It is in this range
of very small obstacles that the effects of thermal activation we derive become
of special importance, but also where the use of macroscopic concepts is most
questionable.

The treatment below follows the scheme proposed in Chapter 2. We will
deal, in sequence, with the terms in the equation

8G = 8Fgppm + 8Fpis — SW.

First, we discuss the interaction energy 8Fg gm between particle and disloca-
tion, then the changes 8Fp,s in the free energy of the dislocation as it changes
its shape and the work 8 W done by the external forces.

Mechanisms of Local Interaction

Among the many important interactions between dislocations and prec.pi-
tates, we select a few that represent a variety of types: some are attractive,
some repulsive, some energy-storing; some act throughout the particle, some
only at the particle-matrix interface; some extend beyond the physical dimen-
sions of the particle—but, in the range of concentrations in which the dis-
creteness criterion is satisfied, we shall treat them all as if they were strictly
localized.

Figure 52-1 illustrates the effect of a uniform element glide resistance inside
the particle, and none outside. This could be due, for example, to a friciion
Stress : ’

TELEM = TERIC [52a]
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Ky = TeLem bw,/_ """"""

(c)

FiG. 52-1. Uniform resistance to dislocation glide inside the particle (a). It may be

represented (b) by a force K, at each interface, which is proportional to the length

x (c). An example of such interactions is the generation of anti-phase boundary
inside a precipitate where TeLem = Xxaes/b.

or to the creation of anti-phase boundary (of specific free energy yaps) in an
ordered precipitate:

TeLemD = Xapp- [52b)

The glide resistance on each element of dislocation in the particle can be
integrated from the center to either side to give two equivalent point forces
resisting motion in the y-direction (eq. [25a], Fig. 52-1b), each of magnitude -

Ky - fELEbe' [520]

It is plotted as a function of the forward displacement in Fig. 52-1c. In fact,
the piece of dislocation inside the particle may be forced to be straight for
physical reasons, so that the representation by a force K, at each end (Fig.
52-1b) would be closer to the actual mechanism than the representation by a
constant g gu-

Many coherent precipitates are surrounded by misfit stresses, which are
proportional to the relative difference le| in lattice constants of matrix and
precipitate in the unstrained condition. These internal stresses form an ele-
ment glide resistance that varies rapidly both with forward displacement of
the dislocation and also along the length of the dislocation at a particular
position. Here we consider well-separated spherical precipitates with a volume
misfit only. (The problem of overlap of their stress fields is discussed in sec.
25.) For such isolated precipitates, the element resistance is zero inside the
particle and highest along the interface.
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FiG. 52-2. The interaction of misfit stresses with an edge dislocation. The distri-

buted glide resistance at either side of the precipitate may be represented by a

point force K, at each interface; but since the interaction begins before the disloca-

tion has reached the particle, and extends beyond the point of exit, the precipitate

must be thought of as having a larger effective diameter, e.g. 2w. The force

distance relation shown is qualitative and is schematically replaced by a sine
curve (dotted) for future use.

One may again represent this distributed glide resistance by point forces K,
at each dislocation-interface intersection. For edge dislocations, their depen-
dence on the forward displacement y must be qualitatively as shown in Fig.
52-2, except that for half the particles it will be attractive rather than repulsive
as shown. (This depends on whether the particle center lies “above” or
“below” the slip plane. The magnitude of K, also depends critically on the
spacing between particle center and slip plane.) Proper averaging over these
“vertical” distances is a difficult problem (GEROLD and HABERKORN, 1965;
BrowN and HaMm, 1971). For the average maximum force one gets within a
factor 2 or so:

K, ~ |elubw  (edge). [52d]

It applies only to edge dislocations; the resistance to screw motion is less.
Next we consider a difference between the line energy of the dislocation
inside and outside the precipitate. In the simplest case, this could be due to a
change in core energy. In some instances, this is easily calculated. In a void or
bubble, the core energy disappears completely, giving a maximum drop in
energy of w# core (Where Fcopg is the specific free energy of the core). In
general, the change of core energy reflects the different shapes of the atomic
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{a) (b

Fi1G. 52-3. A difference in dislocation line energy in particle and matrix: (a) due to

a difference in core energies, (b) due to a difference in elastic constants (schematic).

The force K, describes only the line energy difference. The configuration shown
corresponds to a higher line energy inside the particle.

force-distance curves for the atoms inside and outside the precipitate, and thus
is related not only to the usual (2nd order) elastic constants, but to those of
higher order also, since these describe the shape of the interatomic potential
at the large displacements which exist in the core. An oxide, carbide or nitride
particle, for instance, could have the same (2nd order) shear modulus as the
metal matrix in which it was imbedded, yet possess higher order constants
which differ completely from the matrix. This would lead to a very large
change of core energy. For this reason, the passage of the dislocation through
the precipitate is resisted.

Another reason for differences in line energy inside and outside the precipi-
tate could be a difference in stacking-fault energies; the copper—cobalt system
is an example.

The most important difference in line energy inside and outside the precipi-
tate comes from a difference in elastic constants (of the usual “second order™).
This is a nonlocal effect, since the strain energy of a dislocation is influenced
by elastic heterogeneities even when it does not intersect them. Again, we
idealize this effect to an abrupt change of line energy at the interface (RUSSELL
and Brown, 1972).

Figure 52-3a shows the geometry for all cases describable by such an abrupt
change. One may express the effect by saying that there is a piece of disloca-
tion of length 2x inside the particle whose free energy per unit length equals
the difference AF ;s between that of the actual dislocation lying in the
precipitate and one that would have matrix properties. When the dislocation
is displaced forward by 8y, its length changes by 8x at each interface; the free
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energy of the specimen thus changes by -
8F = AF 5 6x [52e]
.at each interface. It is appropriate, then, to introduce a force
K, = A% s f52e]

acting on the dislocation at the interface in the direction along the dislocation
in the particle (i.e. in the negative x-direction). This is in fact a “line tension”
on this point. Obviously, it acts in a different direction than the retarding
force K, used before; nevertheless, it provides a resistance to forward
motion, which we shall derive below.

In the core energy case, K, is independent of how far the dislocation has
advanced into the particle (Fig. 52-3a). When the difference in line energy is
due to a diﬁ“erence[in elastic constants, both the dislocation shape and the
force-distance diagram vary more smoothly, which is qualitatively shown in
Fig. 52-3b. The average, which we shall use, must be approximately given by

K, ~ App? MIT0) [52¢"]
s
for a screw dislocation. For an edge, differences in other elastic constants,
including the compressibility, are equally important. The appropriate com-
bination is the one that enters & gpge.
The final mechanism we discuss is the creation of a step at the interface,
also called chemical hardening. As a screw dislocation that cuts the particle
advances by 9y, the free energy increases at each interface by (Fig. 52-4a)

OF = ynrh 8y (screw) - [52f]

where yynr is the interfacial free energy. This gives rise to a constant interface
force

K, = xintb (screw). [52f']

For an edge dislocation (Fig. 52-4b), the free energy change is proportional
to the lateral displacement of the new surface generated:

OF = xintb*|8x] (edge). [52¢g] .

Note that an interface step is created whether x increases or decreases as the
dislocation moves forward. If the force K, is defined to be always pointing
inward (as in Fig. 52-3,), it is (Fig. 42-4b): :

Ky = xine besign(—p)  (edge). [52g']

(The origin of x and y was consistently chosen at the particle center, Fig.
52-1.)

In real materials, more complicated processes than those described here commonly
occur; the simple interactions depicted in Figs. 52-1 through 52-4 may in practice

LA

/5
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b]&l

~

x
x

~<
<

(a) (b)

FiG. 52-4. Creation of an interface step by (a) a screw dislocation, (b) an edge

dislocation. In (b), the difference between the shaded area bx and the actually

created surface area is a second-order effect exaggerated in the figure. Note that

K, points outward in the second half where 8x < 0; the change in free energy is
always positive.

be oversimplifications. Internal disordering (Fig. 52-1) is partly avoided if disloca-
tions move in groups of two or more, such that the net Burgers vector of the group
does not disorder the particle; the details have been discussed by GLEITER and
HoRrRNBOGEN (1967), and by CopLEY and KEAR (1967). Change of stacking fault
energy (Fig. 52-3a) can result in more complicated interactions, depending on the
ratio of the particle size to the equilibrium separation of the partials (HirscH and
KELLY, 1965). A misfit stress (Fig. 52-2) may cause a dislocation to undergo a com-
plicated series of cross-slip maneuvers (GLEITER, 1967; DuesBery and HIRSCH,
1969; HirscH and HUMPHREYS, 1970). In a particular size range, even more involved
interactions may occur, whereby the glide dislocation permits the particle to lose
complete coherency (BRowN and Hawm, 1971 ; WooLHOUSE, 1970).

Until now, we have only defined “forces” K, and K, as they secemed to be
natural derivatives of the local free energy change.

8F = K, 8x + K, 8y [52g"]

We have not yet specified what components of those forces are relevant
resisting forces to the motion of the dislocation. To do this, we must consider
two successive equilibrium positions of the dislocation (Fig. 52-5, where the
shape of the bowing free dislocation is, for now, irrelevant). As the dislocation
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moves forward, the cusp at the interface moves along the periphery of the
particle. Thus the relevant interface resistance (which led to the cusp in the
first place) is the tangential force K, ; the previously derived forces K; and K,
are relevant only in their components tangential to the interface. With the sign
convention used in Figs. 52-1 through 52-5:

Ko = K, cos 8 — K, sin 6. [52h]

This equation immediately specifies a superposition law: while one may
simply add the forces due to all mechanisms whose free energy storage rate is
proportional to the same displacement (y or. x here), the forces in different
directions are added in their tangential components (eq. [52h]). Alternatively,

FiG. 52-5. The interface forces K, and K, act only in their components tangential
to the interface, which add up to K,. The cusp in the dislocation is restricted to
move along the interface.

one may add all forces vectorially, and then find the K, component of the
resulting vector. For the mechanisms discussed here (eqs. [52c], [52¢’ ] [52f1],
[52g']), explicit expressions for the tangential force are

KSCREW — 2 b ‘_; cos” 6 + AZ.sin 8 + yurb cos 6, [52h']
KEPGE — 7 b l; c0s? 8 + AZ sin 6 + xirb Isin 0. [52h"]

Table 5-1 summarizes the results for the various individual mechanisms for
screws and edges, and gives orders of magnitude for the physical parameters.
It also shows results for the maximum effective resisting force K and some
thermal activation parameters to be derived below.

The Effective Resisting Force and the Plane Glide Resistance

Above we have discussed how all the effects of the particle on the disloca-
tion can be considered as a pair of point forces along the particle boundaries.
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Now we discuss how the shape of the entire dislocation inside and outside the
particle can be obtained by considering it as a dislocation of constant line
tension subjected to these discrete forces. This, of course, would not account
for the self stresses around the cusps.

The interactions between the neighboring dislocation branches are likely to be
quite important in most cases of practical interest, where the particles are small. To
* take proper account of them, one must use computer relaxation methods, to obtain
the correct line shape of a dislocation such that the total force on each element of
the dislocation vanishes. The interaction force with the particle at its interface,
which must be used in those calculations, is the force K, derived above. In order to
avoid cusps, which may lead to problems in such calculations, one may substitute
for the real interactions a distributed resistance reLem chosen such that it gives the
correct value of K, when inserted into eqs. [52c] and [52h). Note that, since only
differences in line energy inside the particle were included in K,, all dislocation
elements inside the particle must be included in the relaxation and as self stress
sources as if they had the same properties as the elements in the matrix.

FiG. 52-6. The force on the particle, due both to line tension and applied stress,

is the sum of the tangential (6) components of both line tensions (E = matrix

effective line tension—any difference of the particle line tension is contained

in Kp). This applied force must balance the resisting force Ky in equilibrium.

Note that again only tangential components matter: the three total forces shown
in the figure are not and need not be in vector equilibrium.

When such numerical calculations do not exist, one may, in a first approxi-
mation, describe the effects of self stresses by considering the change in length
of the dislocation between the two positions shown in Fig. 52-5. The associated
free energy change, together with the work done in sweeping out the extra
area, is properly accounted for in the “line tension construction” illustrated
in Fig. 52-6, irrespective of the location of the next particle along the disloca-
tion line (eq. [250]). In terms of the cusp angle 24 between neighboring
dislocation branches on the same particle, the equilibrium condition is then

Ecos (¢ + 6) + Esin 6 = K,. _ [52i]
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In the same line tension approximation, one may define an effective resisting
Jorce of the particle on both branches of the dislocation by (eq. [25¢'])

K =2Fcos ¢ [52]

(where we have neglected the particle width with respect to the particle

spacing). In a regular array of obstacles of spacing / along the dislocation, the
flow stress would equal the line glide resistance and be given by

TLINE = g (regular array). [52k]

In a random array, the effective resisting force or (exactly) the cusp angle

2¢ at the particle, are also the determining factors, but the relation is no

longer linear. As long as the obstacles are not too strong, i.e. K < E (see

Fig. 25-16), the “Friedel relation” gives

TpLane = (COs $)3/2 %? (random array) [52€]

or, using eqs. [25%], [25v], [25¢e], and [25fT],
b -~ ’
TeLang = f3/2 ” rVe. [52¢]

Since cos ¢ is thus the important parameter, let us express it in terms of the
element force K, given from the physical mechanism [52h] by solving eq. [52i]:

Ky . . K, . 2
f = cos =cos0-(——sm0)+s1n0-A/1—(——s1n0)
¢ E E ‘ [52m]

(line tension approximation).

As can be seen from this equation and eq. [52h], the effective force K defined
by eq. [52j] is not equal to 2K, (from both sides of the particle), even when
Ky = O—unless 6 =0, i.e. the particle—matrix interface is parallel to the
direction of motion of the dislocation.

In the following figures, we shall present f as a function of sin 8 for the
various interaction mechanisms if they acted individually, and present one case
for two specific mechanisms acting simultaneously. These figures are diagrams
of effective force (K) versus penetration depth. They show very marked
differences, especially at the higher stresses, from the local or element force
(K; or K,) diagrams shown in Figs. 52-1 through 52-4. Note, however, that
they are not yet the diagrams of effective force versus activation distance
needed for thermal activation; these will be obtained in the next subsection by
considering the relation between penetration depth and activation distance.

For illustrative purposes, we start with the mechanism of creating an inter-
face step by moving a screw dislocation (although this is one of the less
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important contributions, see Table 5-I). In this case, the resisting force at the '
interface is in the direction opposite to the average direction of motion y of
the dislocation, and is constant (eq. [52f']). But the effective resisting force K

~or, equivalently, the cosine of the cusp angle ¢, is by no means constant (Fig.

52-7). At the entry side, it is raised to a value that corresponds to the limit up
to which the dislocation must wrap around the particle before entry is more
favorable. This maximum strength K can be obtained by setting the square-
root in eq. [52m] equal to zero.

cos¢-1é—2K—E-

[Ke]

XINT
k=2-b

?éLgk. 2.
E 1+k2

FiG. 52-7. Effective resisting force K as a function of interface inclination 8, for

the generation of an interface step (specific interface energy xint), by a screw

dislocation (or for other mechanisms giving K, = const., Fig. 52-4a). The locus

of the maximum forces is the condition 4 = —8 up to which the dislocation wraps
around the particle.

An interesting variation of this simple case is provided by the friction and
misfit stress contributions (which are important contributions in practice).
Here, the local interaction is still described by a K,-force, but this force now
depends on the penetration depth y (Figs. 52-1 and 52-2). Evaluation of eq.
[52m] gives the curves shown in Figs. 52-8 and 52-9, respectively. While the
friction stress is correctly described within the framework of the assumptions,
the misfit stress is approximated by the dotted sin (my/w)-dependence shown
in Fig. 52-2; this should be good enough near the peak stresses, but obviously
misrepresents the low-stress situation rather severely. One sees from F igs. 52-8
and 52-9a that the lower half of the strength range is altered only little by going
from K| to K; but in the upper half, the dislocation is again forced to wrap
around the precipitate to some extent before entering, and the maximum
effective strength is substantially higher. Figure 52-9b illustrates, in the same
approximate way, the case of an attractive misfit stress (from a particle
centered on the other side of the slip plane): this case is qualitatively different
JSrom the repulsive one. The effective resisting force remains similar to the local
force K, throughout, but is always somewhat smaller.

P.M.S.—H
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- Next, we treat the case of a difference in line tension including, in an
approximate fashion, that due to a difference in elastic constants. Here, the
local force is in the lateral direction (Fig. 52-3) and must, therefore, give zero
effective resistance for y = 0, where the interface is parallel to the direction of
motion of the dislocation. Figure 52-10a shows the repulsive case (line energy
higher inside the particle), Fig. 52-10b the attractive one (line energy lower
inside the particle). The effective resistance is very considerable, even for small
differences in line tension; since differences in elastic moduli in the order of
507, are not uncommon, this mechanism can be a major strengthening
contribution (RUSSELL and Brown, 1972).

cos¢-fé2—KE

FiG. 52-8. Effective resisting force K as a function of penetration distance y for a

circular obstacle (diameter w) when there is a constant additional element resis-

tance (“friction stress”) inside the particle. Internal disordering could fall in this
class (Fig. 52-1).

Figures 52-10 a and b also give the effective resisting force for interface step
generation, when it is accomplished by a moving edge dislocation (Fig. 52-7
gave it for a screw). Here, the resistance is positive both in the “entry” and in
the “exit” half of the particle: it is the upper portion of Figs. 52-10 a and b
put together (see Fig. 52-14a). The maximum resistance may significantly
contribute to hardening by voids (where the interface energy is the free surface
energy, and k ~ 0.2, see CouLoMB, 1957; WEEKS et al., 1969). On the other
hand, the strength is finite, not infinite as predicted by FRIEDEL (1969), who
set K = K, = tan 0 - K, without using the proper boundary conditions at
the interface (Figs. 52-5 and 52-6, egs. [52h], [52j], [52m]).

Finally, in one case, let us look at the superposition of two mechanisms:
one in which X, is specified and one in which KX, is specified. The first is taken
"to be a slightly higher line energy inside the precipitate, which by itself would
give rise to the lowest curve in Fig. 52-10a; the second is assumed to be a
friction stress of varying magnitude that by itself would have given the curves
marked 0.1, 0.3, and 0.5 in Fig. 52-8. After superposing them in eq. [52h] and
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cos = f= 5€
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080
(a)

Ky=-|e|~,d"w-sin (w%)
e
mik-E  approx,

(b)

Ky=+|<|<ybw~sin(v%)

——
k-E opprox.
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Fic. 52-9. Rough description of the effect of misfit stresses (Fig. 52-2, dotted
curve), (a) in the repulsive, (b) in the attractive case. Note that they are not oppo-

site to each other.



(@)

F1G. 52-10. Effective resisting force K as a function of interface inclination 9, for
(a) an increased, (b) a decreased line energy inside the precipitate (Fig, 52-3). Line
energy % and line tension E are assumed equal in the formulae, but the curves hold
forany |K,|= k-E. The upper halves of both figures together give the case of an
interface step creation by an edge dislocation (k = xintb/E, Fig. 52-4b),

210
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inserting the resulting K,(6) into eq. [52m], evaluation gives the curves shown
in Fig.-52-11. It is seen that the low value of the friction stress contributes
virtually nothing to the strength, and the intermediate value contributes
relatively the most. Mere addition of curves for the individual mechanisms
(Figs. 52-8a and 52-10) would have given no change at all in the maximum
strength, since the respective maxima are located precisely where the other
mechanism has zero effective strength.

In Fig. 52-12 we have summarized the relations between the maximum
effective strength f and the constant k in the local resisting force from Figs.
52-7, 52-8, and 52-10. Without use of the proper boundary conditions at the
interface f'and k would be the same; obviously, the deviations are substantial
in many cases. Only distributed glide resistances, such as misfit stresses and a
(dis)ordering resistance, are treated correctly bv the conventional method
(BrowN and HaM, 1971), and only if they are not too strong. The most severe
deviations occur for K,-mechanisms such as that due to a moduius difference;
this was first realized by RUSSELL and BROwN (1972).

At this point, one must compare the particle strength associated with these
cutting mechanisms in their actual combination, with the alternative of Orowan
bypassing. In the line tension approximation, bypassing will occur when, by bowing,
the dislocation is wrapped around the obstacle until 8 = 0, i.e. when the normalized
obstacle strength exceeds 1. As was discussed in connection with Fig. 25-9, the
line energy to be used for the local force is, however, only the line energy of a
dipole of width w. Putting it another way, at a cusp angle ¢ as calculated on the line
energy model, which is considerably greater than zero, the interactions between
neighboring branches of the dislocation on either side of the particle cause the actual
angle with which the dislocation leaves the particle to be zero 'and the Orowan
stress to be reached (BACON et al., 1973). The respective case for penetrable obstacles
has not been solved; for that reason, it is at present unclear whether the interaction
affects both processes equally, so that ¢ = 0 is the correct criterion; or whether the
formulas used here for cutting with a single line tension are approximately correct
even in the presence of interactions, so that all the curves in Figs. 52-7 through
52-12 lose their significance for f = # (eq. [25y)).

Activation Distance and Activation Energy

In the preceding, we have derived the effective resisting force K of obstacles
as a function of the distance y measured in the direction of the penetration of
the dislocation into the particle (or, more generally, as a function of the angle
6 between the particle interface and the direction of dislocation motion—
which for circular particles are related by y = w/2 sin 6). For thermal activa-
tion analysis, we need know K as a function of the activation distance d, which
is not the same as y.

Changes 6d in the activation distance are defined (eq. [25g]) in such a
manner that, with the chosen definition of K, one obtains

8F = K éd - [52n]
for the change in free energy. Equivalently (eq. [440]), it must be chosen so
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F1G. 52-11. Effective resisting force K as a function of penetration depth y, for two

mechanisms acting simultaneously: a small positive difference in line energy

(alone:——) and three levels of friction stress (alone: ——-). The superposition
(—) is most effective at the intermediate level,

-->
n
o

m

—_—

Higher or lower line energy in particle

’—_ Interface step
creation by edge

. | or screw
T2 /ok / Naive result

/

Constant friction stress
(disordering; repulsive misfitting
particles are qualitatively

similar). Here, kaw,

F1G. 52-12. Effective strength f (cosine of the breaking angle of the equivalent
point obstacle) versus local strength parameter &, from Figs. 52-7, 52-8, and
52-10.
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Fi1G. 52-13. Definition of the activation distance d. Together with the effective

resisting force K = 2E cos ¢, it defines an equivalent obstacle: a “ribbon” along

the bisector of the two free dislocation branches. Note that the “ribbon” is
generally longer than w: it extends beyond the particle on the “entry” side.

that the area swept by the dislocation of length /. on either side of the particle
between two equilibrium positions is

8a =1 38d, [52n']

for then the applied stress K/bl, in equilibrium with K does work §W = 8F
during a virtual variation. Figure 52-13 shows the geometric definition of &4
that fulfils these conditions, for three successive positions of the dislocation.

An integrated value of d, for convenient plotting of a K-d diagram, is
(because of the overlap of 84’s evident in Fig. 52-13) more easily obtained by
extrapolating the free dislocation to the particle “axis’” (i.e. the bisector of the
two free dislocation branches). If we again neglect the particle dimensions
with respect to the particle spacing, and therefore any dislocation curvature
inside the particle, simple trigonometry shows that

d = y(1 — cot ¢ cot §) [520]

where y = w/2+sin 6 and the origin of d was alsc "osen at the origin of y,
for convenience (Fig. 52-12). Inserting f = cos ¢ = K/2E, we obtain

cos ) [520']

e
d= 3 (sin 8 Vg

where fis itself a function of 6.
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Fic. 52-14. The effective resisting force X' (normalized by twice the line tension E)
as a function of (a) the penetration depth y, (b) the activation distance d, for
mechanisms in which K; is prescribed: higher line energy inside the particle (left
side); lower line energy (right); or interface step creation by an edge (both sides).

The meaning of the corjoint definitions of K (or f) and d can now be seen
in a very plausible way: they correspond to a mapping of the particle-disloca-
tion interaction onto an idealized, ribbon-like obstacle oriented symmetrically
with respect to both branches (Fig. 25-1 for w < 1,). Included in this mapped
“particle-dislocation interaction’ are all changes in dislocation line length and
shape called for by the varying orientation of the actual particle-matrix inter-
face; but not included are changes in line length as a consequence of non-
collinear arrangement of particles along the dislocation, as it would occur in a
random array: they are represented, in such calculations, together with the
applied stress, by the actual cusp angle 24 at the “point obstacle”.

The result [520] is illustrated in Fig. 52-14b for interface step creation by an
edge dislocation. It is seen that this K—d diagram deviates substantially from
the corresponding K-y diagram in Fig. 52-14a. For example, the infinite
slope at K in the K-y diagram has become finite in the K-d diagram
Note also that the total area under the K-d curve for a specific value of
IKy| = xintb is now equal on the left (or entry) side and on the right (or exit)
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side of the particle, as it should: equal interface step area, and thus equal free
energy, is created on either side. Figure 52-14b can also be used for the more
important case of a difference in line energy (Figs. 52-4 and 52-10): the left
half applies to the repulsive case, the right half to the attractive one.
The free enthalpy of activation at a given applied stress ¢ can now, in
principle, be obtained by integration (eq. [44f]):
£
AG = f AddK . [52p]

aobl,

for each mechanism, or combination of mechanisms. The generally “pointed”
shape of the K-d diagrams shows that thermal activation may have a con-
siderable influence on the flow stress at least at low temperatures.

In order to proceed with a specific case, we assu.ne that the result of such an
integration comes close to one of the phenomenological relations for short-
range obstacles introduced in eq. [44£]:

AG = F, [1 — (g)”']q. | [52q]

Likely appropriate values for p’ and q, and thus for p = %p’ (eq. [44¢8']), can
be gleaned from Fig. 43-7. For all mechanisms strictly limited to the confines
of the obstacle, p’ should be equal to 1; for misfit stresses, which decrease with
distance as 1/y3, p’ = £ (eq. [43v] and following). The exponent q describes
essentially the shape of the fop of the K-d diagram (eq. [43v’], Fig. 43-7);
Fig. 52-14b (and the equivalent K~d diagram for Fig. 52-7) show that for all
interface mechanisms the top is pointed (q = 2), whereas for a distributed
element resistance, if it is not too strong (Figs. 52-8, 52-9), the top is rounded
(q = 3/2). We have inserted our best guesses for the various mechanisms into
Table 5-1. As idealizations we may use

so-r ()]

(a triangular K-d diagram for randomly distributed particles), or, for more
smoothly varying interactions,

AG = F,,~[1 — (f)m]m. (529"

A
b4

The- latter has the additional advantage that it provides a good fit to all
reasonable relations for discrete obstacles, as was pointed out by ONo (1968).

Temperature Dependence and Age Hardening

A AG(o) relationship such as that given in eq. [52q"] can be directly
translated into a o(T') law at constant strain rate: '
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-[-@T

The temperature T, at which the precipitates can be cut by thermal activation
alone is given by

kT, = Fy/In (yov6/7)- [52r]

We must first derive an estimate for the logarithmic term.

It was shown in sec. 33 that the combination of parameters entering y, is,
for discrete obstacles, primarily determined by the slip plane spacing, which
in turn should be approximately equal to the average particle spacing /; thus

(eq. [332]),

yox 2ol e m10-2 10 1070, [525]
I w
The frequency factor v was shown in sec. 42 to depend primarily on the
normalized stiffness C of the particle. Figures 52-7 through 52-9 show that the
force—distance relation rises quite rapidly for all repulsive obstacles, some-
what less rapidly for the attractive ones (acting at the exit side of the particle).
As an order of magnitude, we have (eqs. [42g], [42h], [31g]) for K/ub® ~ &,
wy dK 1

v v ZATOM. ¢ o PACR. 1 1011 1o 1012 571, [525']
10 10 dd pb

With a typical strain rate y ~ 10~ s~ this gives the relatively high value

In (ywe/7) =~ 30. [525"]

The values of # and F, to be used for our o(T') diagrams depend on the size
of the particle. Inspection of Table 5-I shows that there are two classes of
mechanisms:

Class A (friction stress, disordering, and misfit stresses). The free energy
depends on the square of the particle diameter; for an order of magnitude
description, we may write,

3 2
F,— rb> (f) o [52t]
100 \b

The local force K,, in turn, is proportional to the particle width. This propor-
tionality does not exactly carry over into the effective resisting force K, and its
maximum value K, because of the nonlinear relation [52m] (see Fig. 52-12).
Neglecting this subtlety for the present, or restricting ourselves to forces up to
about half the limiting strength (Orowan strength), we may set, in order of
magnitude,

1

R=2E_.
50

. [52¢']

ol =
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With eq. [52¢], this gives

A 1 — ’

t= om p-Vewlb. [52t"]
With this value and those of eqs. [52t] and [52s"], relation [52r] is plotted in
Fig. 52-15 for various values of w/b. We postpone the discussion of this figure
until we have introduced the other. class of mechanisms from Table 5-1, and
will have developed Fig. 52-16.

Class B (line energy difference, including modulus difference; all interface
mechanisms). The constant-line-tension approximation leads to a free energy
which varies linearly with the particle diameter w, and a force (local as well as
effective) which is independent of w. But introducing a proper self stress, or
approximating in some manner the branch-branch interaction, changes this:
it leads to a w-dependent force, i.e. age hardening (RUSSELL and BROWN,
1972) which we neglect.

With typical numerical constants, then:

3
MW [52u]
10 b
and
b -
p=1b © Ve [52u’]
2w

The inverse width dependence of the flow stress stems from the change of
particle spacing with particle diameter at constant volume fraction c. Insertion
of these equations and [52s"] into eq. [52r] yields the curves in Fig. 52-16, for
various values of w/b.

The diagrams in Fig. 52-15 and 52-16 show the expected qualitative be-
havior: the smaller particle sizes exhibit the stronger temperature dependence
of the flow stress. This leads to a number of interesting effects. When the
smallest particles give the highest mechanical threshold as in Class B (Fig.
52-16), the larger particles give a higher flow stress at high temperatures. This
leads one to suspect that a “plateau’-like behavior at high temperatures may
be the result of a spectrum of particle sizes (DIEHL e? al., 1965); we will not
attempt to go into this further here. The temperature scale in the figures was
chosen such that the range up to about half the melting temperature
(kT/ub® ~ 0.01) is covered.

For Class A mechanisms, the mechanical threshold rises with rising particle
size; at a given volume fraction this can explain age hardening. At higher
temperatures, as shown in Fig. 52-15, the effect gets accentuated. Putting it the
other way around, at higher temperatures, the smallest particle sizes are
already above their respective T, and thus give no strength; only after some
aging has taken place, does the strength rise. Fig. 52-17 shows the resulting
age-hardening curves for 7 =0 K, T ~ Ty/4, and T ~ Ty/2. Such extra-
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Fic. 52-15. Normalized flow stress vs. temperature diagrams for different particle
sizes in an age-hardening material. For constants used, see eqs. [52r], [52s”], [52t7],
[52t”]; the temperature scale covers the range up to about half the meiting point.

10—

.0l
kT

pb3

FI1G. 52-16. Normalized flow stress vs. temperature diagram for different particle

sizes, when the particle strength is independent of its size. At high temperatures,

both age-hardening and age-softening may appear. For constants used, see
egs. [52r], [52s”], [52u], [52u’].

polation of the hardening curves to a finite particle size at zero strength has
in fact been observed. In the upper strength range, the linear relation between
K and w breaks down (Fig. 52-15), leading to a break-down of the Friedel
relation, eq. [52¢]. Both effects have been incorporated semi-quantitatively into
Fig. 52-17. As we have pointed out repeatedly, dislocation branch interaction
may alter the behavior even more substantially.




-and for materials of Class B (eqs. [52r], [52r'], [S2u], [52u"])
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OZT ; ) RN O.
7T N2

Fic. 52-17, Age-hardening curves at constant volume fraction, for different test

temperatures, from Fig. 52-15. In the upper range, the thin dashed curves incor-

porate the effects from Figs. 52-12 and 52-14, in an approximate way. The solid
dashed curve is the classical result.

If one knows which class of mechanisms is dominant in a particular
material, one can make use of the known w-dependencies to obtain a universal
curve characteristic of the obstacle profile. For age-hardening materials
(Class A), the proper combination of variables is (eq. [52r], [52r], [52t], and
[52t"].

. 1172 2/3
[f. _ll] versus Lk—T In ('}'/0/'}")] [52v]
bw?

uN we

o w |1/2 kT N R
[;bvz] versus Lﬂ In (yo/y)] . [52v']

The overall exponents have been chosen such that a straight line would result
if the phenomenological relation [52q"] in fact holds; but it is the point of
plotting all data on these universal plots that the actual relation should thus
be found. It would then be best to plot the o-combination to the two-thirds
power, which is proportional to K, versus the 7-combination linearly, which
is proportional to AG, in the manner of Fig. 44-5b.

The relative change of flow stress with temperature over the observable
range is slight for the larger particles. Nevertheless, the o(T) dependence at
very low temperatures is far from negligible for all particle sizes. Investiga-
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tions in this range (BYRNE ef al., 1961 ; CHUN and BYRNE, 1969) should make
it possible to obtain a meaningful value of the exponent q and, thus, qualita-
tive information about the shape of the K~d diagram near the top.

To obtain meaningful results by this method, especially at higher tempera-
tures where the effect of thermal activation is less pronounced, it is important
that temperature dependencies of the physical properties have already been
accounted for. As before; one hopes that use of the values of 2 and b (also w)
at the temperature of interest is sufficient. There may, however, be additional
effects; e.g. when differences in stacking fault energy are important (which
have no reason to depend on temperature as ub), or when the misfit stress
depends on temperature because of differential thermal expansion (as has
been shown to dominate the temperature dependence in Cu-Co alloys,
PuiLLIPS, 1965).

Strain-rate Effects

The relative inverse strain-rate sensitivity of the flow stress was defined
(eqgs. [34r], [45a], [45b)) as

= Oy

= =m, + m. 52
aan’T,r m +m(’ [ W]

m

The contribution m, from the preexponential factors [52s] and [52s"] is zero;
in general (sec. 33), it is no more than about 2. Since we shall see immediately
that mg is virtually always large in precipitation hardened alloys, the neglect
of m, is justified.
With various previous definitions (eqs. [43k], [44f"], [44h]) we have, for a
random dispersion,
AW’ 3
me = AW _2KAd_ 2> K Ad [52w']
kT 3 kT  3KkT ub* b
Since pb*/kT 2 100 below about half the melting temperature in most
materials, and Ad/b > 1 in the meaningful range,
m > 100--X [52w"]
pb?
and m can be of order 10 or less only at very small stresses, i.e. for very small
particles at very high temperatures.
The other common measure of strain-rate effects is the absolute strain rate
sensitivity, or its inverse (eq. [43i])

bAd’
T+ kT

dlny
do

_9lny,

[52x]

T.% do

If again we neglect the first term on physical grounds, the “operational
activation area” is a measure of the “apparent activation area” Aa’. For our
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randomly dispersed discrete obstacles, it is (see the development in sec. 44)

Aa = — 286 986G K [52x']
bdo |T.¢ JK |t do|t
—
- Ad-l-gA/fi?_.
K

First, we observe that Ad’ is proportional to the average particle spacing /
and thus, at constant particle diameter,

Ao -
o 52x"
Y Ve [52x]

just as the flow stress is. The method illustrated in Fig. 44-10 can, therefore,
be used to test the discrete model and to separate out any additional contribu-
tions to the flow stress.

On the other hand, Aa’ is by no means proportional to the activation
distance Ad, since the correction factor in eq. [52x’] depends on Ad through
K; it expresses the dependence of the effective particle spacing on the obstacle
strength. The easiest way to disentangle these two effects was proposed in sec.
44: it is to differentiate the In p-term with respect to o2/3, which is propor-
tional to K, rather than with respect to o itself. In the spirit of the universal
plots introduced above, we may combine all variables and write, as follows
directly from the preceding equations,

d( kT] )

— Iny

Ad= (b’c)”3 ub? [52y]

b w2 d(O/[L)zB

and, again,
K o w \?? :
=) . - [52y’
b2 (F b\/c) B2yl

This is a prescription for deriving the obstacle profile from macroscopic data.

Extension to Point Obstacle Resistance

The interaction of a dislocation with an individual solute atom (or other
point defect) may, in some respects, be formally similar to that with a precipi-
tate of atomic size. On this basis, FLEISCHER (1961, 1962, 1963, 1964) formu-
lated a set of theories of solution hardening, primarily using the size and
modulus misfit mechanisms. We have seen that these are just the mechanisms
whose effect extends beyond the physical limits of the “particle”, so that the
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effective size of the “point defects” is larger than b. Thus, they can be treated
as discrete obstacles only in rather dilute solutions.

FLEISCHER (1964) further noted that observations on the strength of such
crystals can be grouped into two classes: those in which the strength contribu-
tion per point defect is small, and those for which it is large. Typically,
substitutional solute atoms are weak, interstitial solutes strong.

Weak obstacles must, of course, be present in substantial concentrations in order
to exert a noticeable influence on the flow stress. This substantial concentration
poses a number of problems. First, the assumption of a random distribution of the
obstacles may be far from true. Second, especially when the distribution is non-
random but even when it is not, the ranges of interaction of various “‘cbstacles”
will severely overlap: at 109, concentration, even the average spacing of solutes in
each slip plane is ~3b; smaller distances must frequently occur, A treatment in
terms of discrete obstacles is then open to question: the dislocation may have to
overcome many obstacles at a time. However, even when the discreteness criterion
is not violated, we have seen (sec. 25, Fig. 25-16) that the combination of low obstacle
strength and high concentration demands ““Mott statistics™’ rather than the ‘‘Friedel
statistics”” used for precipitation hardened alloys: only fluctuations in the distribu-
tion of forward and backward forces on the dislocation contribute to the strength
of the alloy. For all these reasons, we believe that the FLEISCHER theory for weak
solutes (1961, 1963) must be abandoned; a theory based on the original work by
Mot and NABARRO (1948), with suitable modifications (RIDDHAGNI and AsiMow,
1968; Lasusch, 1970, 1972), seems more appropriate. Experiments, which initially
favored the FLEISCHER theory (see, for example, Haasex, 1970), now also point
more in this direction. Since there is no detailed theory of thermal activation under
Mott statistics, we shall not deal with this problem further here.

In dilute solutions of strong solutes, such as interstitial atoms, none of these
problems exist. One may then apply the relevant concepts developed above for
precipitation hardened alloys, in the manner proposed by FLEISCHER (1962,
1964) but including the influence of statistics according to Friedel.

Three separate interactions can be identified as being strong. First, the
interaction force due to a different modulus, which was found to be strong
and independent of particle size in precipitation hardening, should survive in
the limit w — b (FLEISCHER, 1961). Of course, it is not the solute atom that
has a different modulus, but its “bonds” to the matrix may well have different
“spring constants”. This effect can be described by an interaction force

Ko b2 d” | [522]
de

In this section we have not discussed the differences between screw and edge
dislocations. Often these differences can be quite important. In such cases, as
well as when the anisotropy of the crystal is large, the appropriate combina-
tion of elastic constants describing the dislocation energy must be inserted
into eq. [52z] instead of p.

Second, not only can the “spring constants” of the solute-matrix bonds be
different, but so can be the bond energies themselves. During the passage of a
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dislocation the bonds must be “broken” and reformed, leading to an inter-
action force,

R ~ Fyono/b. [522']

It may be looked upon as a local difference in Peierls stress. This effect, which -
is a resulr of a changed ratio of bond strength to modulus may be quite
important in all cases where a local covalent bond is formed (Mott and
NABARRO, 1940).

Finally, misfit stresses may exist around solute atoms. Their influence on
the flow stress may, at first glance, seem negligible (Table 5-I, Fig. 52-12)
inasmuch as it is proportional to 1/w. However, the misfit strain for individual
solute atoms can be much larger than that for coherent precipitates (for which
it is usually less than 4%). It is especially severe around interstitial atoms,
where it is frequently “tetragonal” rather than merely dilational (FLEISCHER,
1962), and may typically be, say, 40%. The interaction force is

K ~ ub?el. [52z"]
Even in substitutional solutions, especially when the solute is larger than the

host atom, |¢| may be substantial (FLEISCHER, 1963). When it is primarily
dilational, it may be represented by (ESHELBY, 1957)

dinb

el = dc

which often exceeds 109, _

The three mechanisms discussed above, certainly in combination, can give
rise to a mechanical threshold that is a substantial fraction of the Orowan
limit (K ~ ub?). On the other hand, the total activation energy F, is severely
limited because of the small size of the obstacle (since it is being treated as
discrete):

Fozkbspb

275

3
. [52aa]
Even this limit is of the order of the bond energy and can probably only be

reached by the use of eq. [52z']. Even if we insert for In (Yo/¥) = 20, the lowest
reasonable value, we have

F, < .U«bs ~ kTMELT

kT, = o~ _TMELT
In(y,/7) 100 2

. [52bb]

The hardening by randomly distributed solutes can thus at best be explained
on the basis of discrete-obstacle theories in the low-temperature regime and
- not near the high-temperature, concentration dependent “plateau’’ stress
frequently observed. This conclusion is confirmed by looking at the strain-
rate sensitivity (eqs. [52w”], [45b]): m must scan the entire spectrum from very
high to very low values as the temperature is raised from 0 K to 7, ; the high
values observed in the “plateau’ region are at variance with this.
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53. SUPERPOSITION OF EFFECTS DUE TO DIFFERENT OBSTACLES

Rarely if ever is the glide resistance in a crystal the result of one type of
. obstacle. In deformed pure metals, for example, in addition to the lattice
resistance there are attractive and repulsive forest dislocations acting as
discrete obstacles, and disiocation dipoles, long sessile dislocations, as well as
grain boundaries, etc., acting as linear barriers in the slip plane. In precipita-
tion hardened and subsequently strained material there are, in addition to the
obstacles listed above, penetrable and possibly also impenetrable particles as
well as solute atoms remaining in solution and possibly antiphase boundaries.
Thus, thermal analysis of a real material requires at least a rudimentary
understanding of the superposition of some of these mechanisms.

On a local scale, the superposition principle is a simple one: the element
glide resistances add at every point in the slip plane, since they describe the
free energy change required at that point, due to any mechanism whatever, if
the dislocation element is to move through it. However, the element resistance
map of each of the individual sets of obstacles or barriers may be affected by
the presence of the others; for example, the presence of solute atoms may
affect the stacking fault energy and thereby change the lattice resistance as
well as the strength of the dislocation forest; or the distribution of solute
atoms or precipitates may be affected by the presence of dislocations or grain
boundaries. In these cases, one says that the different strengthening mecha-
nisms interact; unless the details of this interaction are known, it is then
useless to compare the properties of the “mixture’ with those of the “pure”
states. In the following, we assume, that one knows the element resistance
map for each set of obstacles if it existed alone, but in the distribution and with
the material constants as they actually exist in the mixed state.

We have seen in sec. 23 that the element glide resistance may depend on the
direction of motion of the dislocation; for example, it may be different for
screws and edges. When one resistance mechanism that acts primarily on
quasi-straight screw dislocations (e.g. the lattice resistance) or on quasi-
straight edge dislocations (e.g. weak particle hardening) is added to one that
requires substantial bow-outs (e.g. a hard particle resistance), the line glide
resistance may be affected severely. Thus, even strengthening mechanisms that
are non-interacting in the metallurgical sense used above may interact by way
of the mobile dislocations. Furthermore, the values of effective line tensions
to be used in the flow-stress formulae may depend on the degree of mixture
through the same geometric effects. It seems unlikely that these complications
can be dealt with in any quantitative way other than by computer simulation.

With these significant reservations in mind, we shall now compare the plane
glide resistance due to the simultaneous presence of two sets of obstacles or
barriers with that due to each set alone. Some simple cases lead us to suspect
that upper and lower limits for the superposition law can be stated with some
confidence. We shall address ourselves first to the value of the mechanical
threshold, then to rate effects. Other recent discussions of the subject have
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been given by KLAHN et al. (1970) and, for some special cases, by STANIEK and
HoORNBOGEN (1973).

The Superposition of Mechanical Thresholds

A useful approach in superposition of threshold mechanisms is to grade
them according to increasing structural scale. Whenever the structural dimen-
sions for constituent threshold mechanisms differ by an order of magnitude
or more, the plane resistance of the one with the “finest” structure can be
considered smooth and added to the one of next larger scale as a constant
Jriction stress:

(1) 2)
fpLaNe = TPLANE T TPLANE- [53a]

(Here, the word ““friction” is used without any implications regarding energy
storage or susceptibility to thermal activation.)

One example of superposition was considered in sec. 51. It concerned the
lattice resistance, for which the relevant structural dimensions are the spacing
of the Peierls valleys (of order b) and the length of a critical nucleus (of order
10 to 1005b). This lattice resistance may be regarded as a friction stress when
it is added to the resistance due to strong obstacles such as nodes in the
dislocation network or inclusions (whose spacing is typically 100054). Con-
versely, the strong obstacles may be said to impose a curvature on all disloca-
tions whose lattice resistance is being derived, and thus to provide an “internal
stress” that must be subtracted from the applied stress (sec. 51).

Another example of linear superposition (eq. [53a]) was treated in sec. 24
(Fig. 24-6), where widely spaced strong linear barriers (e.g. grain boundaries)
were supposed to exist in addition to a small-scale glide resistance variation
throughout the slip plane. (The small-scale mechanism was there also
described by a linear barrier such as a lattice resistance; however, the same
result would apply if it were due to discrete obstacles such as small precipi-
tates or forest dislocations.) Strong linear barriers of sufficient spacing permit
the accumulation of dynamic pile-ups behind them; then the plane glide
resistance due to them alone depends on the square root of the line resistance
and the inverse spacing (second term in eq. [24n]). This plane resistance is
added to that of the small-scale obstacles. Again, one may either regard the
closely-spaced obstacles as providing a friction stress to be subtracted from
the applied stress in the derivation of the equilibrium pile-up configuration
(eq. [24k]); or one may regard the other dislocations in the pile-up as provid-
ing a back stress to be subtracted from the applied stress in the consideration
of the interaction of each dislocation with the small-scale obstacles (eq. [24€]).
Either one of these mechanisms may be thermally activated or athermal.

A third example of linear superposition (eq. [53a]) was given in sec. 44 (Fig.
44-12), where two sets of discrete obstacles were assumed present: few strong
ones and many weak ones. The duality between regarding one as a friction
stress or the other as a back stress is evident here, too.
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When the structural scales of the two sets of obstacles are not widely
different, linear superposition does not generally hold. A simple, while rather
artificial, example is the simultaneous presence of two periodic linear barriers
of the energy-storing kind, which have the same spacing but may be ““in phase”
or “out of phase” with respect to each other: if they are “in phase”, the
mechanical thresholds obviously add; but if they are exactly 180° out of
phase, only the larger of the two determines the strength:

TpLANE = IMAX (4;’}.)ANE, 4’1(’%.)ANE)- [53b]

For an arbitrary phase relation, the superposition law lies between these two
extremes, i.e. between the curves marked a and b in Fig. 53-1.

A
TrLane

Al
ToLane 1

A(2)
— TpLANE

F1G. 53-1. Variation of the mechanical threshold 7eLane With the contribution due
to one set of obstacles (2) whose strength or spacing is varied, while the contribu-

tion Fruane from the other set is held constant. Curve a describes linear super-
position (eq. [53a]), curve c addition of the squares (eq. [53c]), and curve b a sole
"~ contribution of the higher threshhold.

Another special case is that of fwo sets of discrete obstacles of identical
strengths, but varying densities. For example, any two impenetrable obstacles
would fall in this category; approximately, one might also treat “‘almost-
impenetrable” obstacles in the same way, such as strong precipitates and
forest dislocations. In this case, the obstacle densities simply add and thus,
under Friedel statistics, the squares of the mechanical thresholds (KOPPENALL
and KUHLMANN-WILSDORF, 1964):

TpLANE = \/(‘Fl()i,)ANE)Z + (?f’i)ANE)z- [53c]

Note that this superposition law, although it is not linear, was derived under
the explicit assumption that the two mechanisms do not interact.

Another case of considerable interest is that of two sets of obstacles of the
same density, but different strengths; for example, misfitting solute atoms in
the atomic plane just above, and just below, the slip plane; or, more generally,
any spectrum of obstacle strengths. For the first case, LABUSCH (1970) using
his statistical treatment (cf. eq. [25ww]) obtains

'T'PLANE = [(‘7'1()1.)“%3)3/2 + ('?'l(’i)ANE)slz ]2/3- [53d]
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The case of a continuous spectrum was treated by FOREMAN and MAKIN
(1967) in their computer simulation method, unfortunately using a uniform
distribution of breaking angles rather than strengths (thus emphasizing the
stronger obstacles). Their results appear to fit eq. [53a] approximately;
certainly, an averaging of the plane glide resistances gives a better fit than an
averaging of the strengths (i.e. of the line glide resistances).

Figure 53-1 shows, in addition to the plots of eqs. [53a] and [53b], already
introduced, one of eq. [53¢] (curve ¢); eq. [53d] would obviously look quali-
tatively similar. It is seen that they lie between the limits of “linear super-
position’’ and “only the stronger obstacle matters’’. We do not know whether
this convenient rule has generality. In data analysis, an investigation of the
right-hand side of Fig. 53-1 would be helpful; i.e. a variation of the concen-
tration or strength of the dominating strengthening component: if it does not
extrapolate back to zero, another mechanism is superposed linearly, but if at
low total strength it does extrapolate back to zero, other mechanisms may
nevertheless be important.

Rate Effects

When the kinetics of dislocation motion is considered, a number of
additional “‘superposition’ effects become possible that are not already
described by a derivation of the combined element glide resistance diagram
for the two sets of obstacles. Some of them are, in fact, not related to two
obstacles at all and thus do not fall under the title of this section; we merely
mention them in rough outline.

First, there is the superposition of a velocity-dependent drag on the glide resis-
tance (whether this glide resistance be due to one or to many sets of obstacles). For
applied stresses above the mechanical threshold, i.e. for continuous glide, this
superposition was treated in some detail in sec. 32. It led to a quadratic superposition
law in a special case (eq. [32i], Fig. 32-1):

., _
o — 42 + (%”) . [53¢]

Below the mechanical threshold, the drag should influence the time spent by a
dislocation segment between thermal release from one equilibrium configuration
and arrest at the next including, for example, the time required for bow-out between
discrete obstacles. This time must be added to the waiting time (eqs. [33r], [33s]) so
that, in a rough way, the inverse strain rates are additive:

i1, L [53f]
¥ 7t Yz
At a prescribed total strain rate, the flow stress must then depend on both mecha-
nisms. FrosT and AsHBY (1971) have shown by a computer calculation that these
drag effects are negligible everywhere except very near the mechanical threshold;
e.g. in shock-loading experiments at room temperature. (Note that at low tempera-
ture, where the mechanical threshold can be approached under normal loadmg
rates, the damping coefficient would be negligible, see Fig. 34-3.)
A more complicated case of a superposition between drag (or a quasx-drag due to
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solute atoms) and a line glide resistance was that of the nucleation and propagation
of kinks treated in sec. 51. Under some circumstances, the mean free path was
governed by a balance between the rates of nucleation and propagation: thus, they
were not ‘“‘independent”. If one were to define strain rates y, and v, for the two
processes, one could derive from egs. [51aa] and [S1cc] a superposition law

¥ € Vi ps, [53g]

i.e. a geometric mean.

In juxtaposition to the first case above, in which the dislocation had to progress
through a set of states in series and the times spent for each displacement were to
be added, there are cases in which alternative paths (a set of states in parallel) are
available to the dislocation. So long as rate effects are not considered, one merely
selects the easiest available path that yields macroscopic deformations; but when
the rates are finite along two different paths, one must add the strain rates (presum-
ing the processes are independent):

Ho, T) = y4(o, T) + 32(o, T). : [53h]

A special case of a possibility to achieve the macroscopic strain rate in different
ways is by the movement of screw or of edge dislocations. They are not independent
inasmuch as an advancing screw increases the length of the edge component of the
same loop and vice versa. From these geometric effects, though they are transient,
GILMAN (1969) derived a superposition law of the form [53g] for the two strain
rates. We have seen that another dependence between different dislocations in the
same slip plane is of prime importance: the back stresses from edge dislocations,
for example, prevent the continued generation of screws, and vice versa. Thus, the
sides of a dislocation loop with the higher velocity (e.g. the screws) will quickly
arrive at the surface or other sinks; from then on, long range slip is determined by
the dislocation with the smaller velocity (e.g. the edge):

y = Min(yscrew, yepGE)- [53i]

Finally, let us return to our area of prime concern in this section, the super-
position of the effects of two sets of obstacles, now at stresses below, rather
than at, the mechanical threshold. The treatment of thermal activation is then
trivial if it affects one of the obstacles only (set 2) and the other is “athermal”
(set 1): one merely uses the superposition law for the mechanical thresholds

_(e.g. eqgs. [53a], [53b], [53c], or [53d]), replacing #ppane by oy, T) and

#eane by TS0 ANe(, T), Which now appears in the Arrhenius law

N F, f{i’m)} .
= y,exp{ — 2 - g| —=ANE) L 53
y =1 p{ T g(ﬂ‘i’,\ - [53j]

For a linear superposition law (eq. [53a]), this is the familiar rate equation
using “‘effective stresses”; but it holds for other superposition laws as well,
under certain restrictions.

Some care is necessary if the thermal activation of one obstacle set changes
its relative contribution to the total flow stress, compared to the contribution
from the other set, in a qualitative way; for example, when the effective
obstacle strengths of the two sets change from being similar to being grossly
different. Then, the superposition law cannot retain any one of the simple
limiting forms throughout the entire temperature range.
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Two thermally activatable obstacle sets can also often be treated. This is
especially so when the thresholds superpose linearly, e.g. when the structural
scale of the two sets is different in order of magnitude, so that

TpLane(s T) = mhrane( T) + roane(? T). [52k]

We have discussed in detail the case of two sets of discrete obstacles, few
strong and many weak ones (sec. 44, Fig. 44-12). The argument may be
extended to other cases: it was that the macroscopic rate is determined by the
configuration at which the waiting times at both obstacles are equal; at a given
temperature, this means

AGD = AG® = KT In (7,/7)- - [53¢]

A very useful relation of the combined “effective activation area” Ad’ (eq.
[43g)) in terms of those due to each set if it were alone, then follows directly
from eqs. [53k] and [53€] (eq. [44x]):

1 1 1

= b, [S3m)]
Ad’ Ady Ad,

Note that the linear superposition law [53k] varies smoothly with temperature and
becomes eq. [53a] at zero temperature. This feature was absent in the attempts by
L1 (1968) and by FrosT and AsHBY (1971) to treat the ‘‘small-scale” glide resistance
as a quasi-drag obeying a nonlinear power-law (without threshold). In such cases,
in the same way as for the linear stress-velocity relation (see eq. [32£]), the influence
of the one threshold always vanishes when the other becomes dominant, while in
eq. [53k] the constant contribution survives.

Obstacles of similar strengths, which obey the superposition law [53c] with
respect to their mechanical thresholds, are much harder to treat when they
are both subject to thermal activation: small differences in the shape of their
profiles can then lead to varying dislocation paths as the temperature is raised.
DIeHL et al. (1965) have discussed this problem for the general case of a
spectrum of activatable obstacles.



6. DATA ANALYSIS

Summary

The last chapter described specific models that predicted certain macro-
scopic properties: properties that can be measured. So the model could be
checked by experiment—provided, of course, that the property in question is
a model-sensitive one; a model-insensitive property is consistent with a
number of competing models, and cannot be used to check them. Many
characteristics of crystal plasticity are, in fact, model-insensitive.

To avoid this problem, one might ask the question the other way around:
what properties must a physical model have if it is to agree with the experi-
ments? Or more specifically: what properties must the obstacles to disloca-
tion motion have to cause a specific macroscopic observation ? By answering
this question, one may learn enough about the obstacles to be able to identify
them. Examples of this inductive approach are given in this chapter.

If one wishes to derive properties of a theoretical model from experimental
data, it is essential that the reduction of the data themselves is done without
any implicit assumptions of the theoretical model. In other words, the experi-
mentally derived parameters have to be operationally well defined. Section 61
deals with appropriate operational parameters and their relation to the
parameters in model-inspired phenomenological laws such as the Arrhenius
equation. The main result is a summary of ways in which the data can be
plotted, and of the conditions under which a given plot is appropriate.

The activation analysis of macroscopic data, as outlined above, is taken up
in secs. 62 and 63. It concerns itself with such questions as: are there two
different hardening agencies (such as two different kinds of obstacles, or one
obstacle and a lattice friction)?; are the obstacles strong or weak, few or
many, big or small, long-range or short-range?; what is the mechanical
threshold stress?; is the v~Aa diagram flat or rounded or pointed near the
mechanical threshold ?; what can one say about the mobile dislocation density
and its dependence on stress and temperature ?, and so on. Experimental data
are probably never sufficient to answer all of these questions at the same
time. The technique is then to make simplifying assumptions about those
aspects of the problem that do affect the result very much. For example, any
changes in mobile dislocation density have little effect when the material is
rate insensitive (sec. 62). On the other hand, any temperature dependence of
the activation energy or of an “internal stress” has little effect when the
material is rate sensitive (sec. 63). :

Special problems arise when one actually tries to establish the experimental
relation between the operational variables stress, strain rate, and temperature;
for at a prescribed temperature and stress, for example, the strain rate is by no

230
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means constant, but usually varies first rapidly in a transient sort of way and
then slowly. Suitable extrapolation procedures must be prescribed to define
the operational parameters for each type of application. This is taken up in
section 64.

Many authors have been concerned with the problem of inferring micro-
scopic information from macroscopic measurements. Among the more recent
ones are: »

dEMEESTER, YIN, DONER, and CoNRAD (1973), Thermally Activated Deformation of
Crystalline Solids; ‘

Evans and RAWLINGS (1969), The Thermally Activated Deformation of Crystalline
Materials;

GiBBs (1969), Thermodynamic Analysis of Dislocation Glide Controlled by Dispersed
Local Obstacles; ' .

KLAHN, MUKHERIEE, and DorN (1970), Strain Rate Effects;

L1 (1968), Kinetics and Dynamics in Dislocation Plasticity;

Surek, Kuon, Luron, and JoNas (1974), Linear Elastic Obstacles: Analysis of Experi-,
mental Results in the Case of Stress Dependent Pre-Exponentials.

61. OPERATIONAL PARAMETERS VERSUS MODEL PARAMETERS

In this section we shall deal with descriptions of rate processes in which
structure parameters do not appear. This may be so because one describes
“instantaneous’’ changes, in which the structure is assumed not to change;
alternatively, one may describe the “asymptotic” or steady-state behavior
after a change, which is characteristic of a structure that has adjusted itself in
all possible ways to the new boundary conditions, and thus is again uniquely
defined by external parameters.

In either case, the only variables of the problem are strain rate, stress, and
temperature. In a more general description, pressure and other stresses must
also be included (see sec. 43). Effects of 4, as they were introduced in sec. 33,
are also neglected here, but will be discussed where they could be important.

Operational parameters frequently used to describe the interrelation be-
tween the main variables are:

dlny dilny
=_-" "7 | =kT 6
Q= s kD). oInT|o [61a]
and
dlny
m=
dlno|t [61b]
From these definitions follows
dlne _ Q
2InT|?  mkT [61c]
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if indeed there is a functional relation between the three variables y, T, o only.
We have encountered (eq. [43i]) one other phenomenological parameter,
which we called the “operational activation area”:

kT oy~ _ mkT [61d]
b Jo |t bo

The definitions of the operational parameters Q and m do not, of course,
imply that they are constant; in general they depend on stress and tempera-
ture (or on any two of the three variables). The special cases that they are both
constants, or that both depend on stress only are, however, of some interest
and will be elaborated below. v '

The operational parameters Q and m are related to model parameters such
as activation enthalpy AH and apparent activation area Aa’ in an Arrhenius
type rate equation (eq. [43a]),

AGl, T) [6le]
kT

7 = }70(0', T) ‘eXp —

While this equation is model inspired, it may be used as a purely phenomeno-
logical relation, if the two parameters

Yo = Yo¥ [61e]

and AG are al.lowed to depend in an arbitrary way on stress and temperature.
The operational parameters are then identified as follows (eqs. [41m] and
[43k)):

Jdln P, ’
= kT ° AH, [61a’]
Q J In7T|s +
mkT — &7 310 %e|  App [61b7]
Ino|r

where AW’ = obAa’ as before.

Operational activation analysis consists in finding ways to measure, in each
equation, each of the terms on the right separately, or to prove some of them
negligible and to measure the rest. For example, the temperature dependence
of the preexponential (the first term on the right of eq. [61a’]) is almost always
negligible compared to AH; typically,

diny
kT °| o~ — kT2, 6la”
olnTie / [ a]

(See the discussion of eq. [430]).
We now consider the special cases mentioned earlier, for which Q and m
are either constant, or for which at least one of them depends only on stress.
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Q and m are Constant

_ A rate equation of the form

~ _ b [61f

y = Ac" exp i [61f]

with no implicit stress or temperature dependence, leads to congruence

between the model parameters n and U,, with the operational parameters m

and Q, respectively. The plots relating the various measurable quantities to

each other must then have the form shown in Fig. 61-1a through Fig. 61-1c,
and the parameters can be easily derived from them.

Ln ¥
o
W Q = Uo
1
(o) KT
Lny
AL
slope m=n
£
e ® i
7
~-slope L:,—o '
A1
(c) KT

F1G. 61-1. The appropriate way to plot data when m and Q are constants. The
data are then described by eq. [61f].

An “activation energy”’
0="U, [61f’]

independent of stress and temperature is a realistic approximation for some
high-temperature applications. In these cases, the rate of reverse dislocation
motion may not be negligible; it would (eq. [45j]) contribute a 1 to the
exponent n. Other contributions to n may come from a dependence of the
steady-state mobile dislocation density on stress (if asymptotic behavior is
being discussed), and from a possible dependence of the frequency factor on
stress (see sec. 42).

Equation (61f] is a sensible phenomenological relation only when n is not
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too large; say, no larger than 5 or so. Whenever exponents much larger than
this are encountered, the possibility of an exponential form of stress depen-
dence must be investigated. (Some general rules about meaningful pheno-
menological relations were discussed in sec. 34.)

A minor modification of the rate eq. [61f] would be the incorporation of an
additional known temperature dependence. For example, the reverse jumps
quoted above would always imply an inverse temperature dependence of A.
In such a case, one should replace y on the left-hand side by yT, and the entire
formalism can be applied in the same way as above.

Jonas and Luton (1971b) have analyzed the empirical power law [61f]
with constant parameters in more detail and compared it to the predictions of
thermal activation analysis. In particular, they have shown that the assump-
tion of a temperature independent n leads to peculiarities in the activation
entropy. In the following, we shall always assume that the operational para-
meter m is trivially proportional to 1/T at constant stress—and that- the
product mk7 may depend on stress.

Q and mkT Depend on Stress but not on Temperature
Another relatively simple case, which sometimes describes experiments

adequately, is an Arrhenius equation with a constant preexponential and an
activation enthalpy that depends on stress but not on temperature:

AH(o)

T [61g]

Y = Yu'exp —

For reasons to be seen immediately, we have lumped the activation entropy
AS in with the preexponential (egs. [61¢], [42¢])

. . AS ,
7H = VY, €Xp 7' [61g ]

Evidently, Q = AH depends on stress only. Furthermore,

mkT — k7 210 7a| _ 2 AH(o) [61h]
dlno T dlne |1

is independent of temperature, if the preexponential yy is independent of
stress as claimed in eq. [61g]. In part, this means (eq. [61g']) that the activation
entropy must be independent of stress (as well as of temperature). We have
seen in secs. 41 and 43 that this is possible to a good approximation over a
large temperature range for certain kinds of glide resistance profiles (without
“plateau’), even when AS itself is finite. In such a case, the activation free
enthalpy AG would depend linearly on temperature; and for this reason, it
was here more convenient to write the Arrhenius equation with AH as in eq.
[61g].
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For this special case (74 and thus AS independent of stress and tempera-
ture)

__OAH

[61i]
dlno|r

ka =

which implies that the operational activation area mk7T/bo is equal to the
apparent activation area (eq. [43g]): '

mkT

bo

Aa'. [61i']

The apparent obstacle profile (Fig. 61-2) is then particularly easy to determine
experimentally. '

kT 3£nY

I T'bAo’

FiG. 61-2. The apparent obstacle profile derived from measurements of o as a
function of ¥ and 7, in the special case that mkT and Q depend on stress but not
on temperature.

Such an easy correspondence between operational and mechanistic para-
meters is very convenient. It depends primarily on the assumption of a
constant preexponential in eq. [61g]—an assumption that must be verified.
This can be done in a number of ways. First, if it were not true, mkT would
have to depend on temperature at constant stress, according to eq. [61h].
Second, the straight lines in an Arrhenius plot (Fig. 61-3a), which are now no
longer parallel as in Fig. 61-1a (eq. [61g]), must go through one point at
infinite temperature—though, since the extrapolation is a long one, this can
rarely be checked with much certainty. Finally, inversion of eq. [61g] gives:

AH(c) = kT'In 8 [61g]
Y

so that, for this special case—and only this one—a plot of the measured acti-
vation enthalpy vs. temperature at constant strain rate gives straight lines
through the origin up to the total activation energy U, where the process
begins to follow a form described by eq. [61f] (Fig. 61-3b).

When eq. [61g] describes the rate processes, T In (yy4/y) is the correct vari-
~ able combining the effect of temperature and strain rate as was first recognized

by MACGREGOR and FISHER (1946). If one plots the stress (or any function of
stress) against this parameter for tests at many different strain rates, one must
obtain a single curve provided one has chosen the right value of yy (SLEESWYK,
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Ln¥
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FiG. 61-3. Appropriate plots, and their characteristics, for the special case that
Q and mkT depend on stress but not on temperature.

Lno

N
ol

—= kTt (/%)

FiG. 61-4. The “Fisher plot” often used to display the temperature and strain rate

dependence of the flow stress. The curves shown are for four “short-range

. mechanisms” (solid) and one “long-range mechanism” (dashed). The dotted line
corresponds to m = F,[2kT.

1970); this is, however, not a sensitive determination of yy (van DEN BEUKEL,
1970).

In Fig. 61-4, the logarithm of the stress is plotted versus this parameter.
Diagrams of this type are widely encountered in the literature on creep of
structural alloys and are sometimes called “Fisher plots”. At any given tem-
perature, Fig. 61-4 is a double-logarithmic strain-rate versus stress diagram
like Fig. 61-1b, but with interchanged axes; only a small range along the
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abscissa could in practice be tested at any one temperature. At a given strain
rate, finally, Fig. 61-4 is a somewhat unconventional plot of the temperature
dependence of the flow stress.

Figure 61-4 is useful for data analysis in terms of the kinds of mechanisms
discussed in Chapters 4 and 5. This is because a straight line on this diagram
(dotted) corresponds to a logarithmic dependence of the activation energy on
stress, which is the borderline case between “‘short-range’” and “long-range”
mechanisms and corresponds to a power law with m oc 1/T but independent
. of o; deviations from a straight line in Fig. 61-4 signal deviations from this
power law stress—strain-rate relationship. We have plotted in Fig. 61-4 the
calculated curves for various realistic phenomenological relationships between
activation energy and stress. It is seen that the curvature is convex upward for
all short-range mechanisms at stresses less than about half the 0 K flow stress,
but remains convex downward for long-range mechanisms throughout the
entire stress range. At very low temperatures, the curvature is convex down-
ward even for short-range mechanisms, so long as the exponent q > 1 (i.e.
the line glide resistance profile has a rounded or sharp top, not a flat one). it
is also obvious from this figure, that a straight line may describe many experi-
ments very well over a substantial range of the variables, even if the true
material behavior is given by the typical short-range profile [43w”] (heavy line
in Fig. 61-4). Thus, power-law relations between strain rate and stress do have
phenomenological merit (despite CHRISTIAN, 1970); a typical value for the
observed m would be about F,/2kT.

Q Depends on Stress, m Depends on Stress and Temperature

When the tests for a constancy of the preexponential factor fail, but the
lines in an Arrhenius plot are still straight, one may wish to assume a more
general rate equation of the form

AH(o) .
et [613]

The meaning of Q = AH is not changed, but the direct correspondence
between the operational actlvatlon area

7 = yu(0)-exp —

mkTfe and — 9AH
do |1
is lost (eq. [61i']). One must now determine
QA_H _4d0 [61k]
do |1 do

from the stress dependence of the Arrhenius slopes. Information on the stress

dependence of the preexponential can then be obtained from comparing the
two measurements:

gr-310 7 _gpdlny | 40 [61K']

do da do
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do
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FiG. 61-5. Diagrams illustrating the experimental determination of the terms of

eq. [61k’]: (a) the determination of (JAH/da)r; (b) the determination of (dln ¥/

do)r; (c) evidence of the difference between them. The plots are appropriate when
Q depends on stress but not on temperature.

Figure 61-5 illustrates the determination of a

dIny and a o VS. oAH

diagram.
do |T do |T

ovs. kT

The apparent activation area Ad’ cannot be obtained in this case, since the
stress dependence of yy may contain one of AS: there is no operational way

of separating the two.

In principle, the failure of the tests for a constancy of the preexponential accord-
ing to Fig. 61-3 could have been due to a temperature dependence of yu rather than,
‘or in addition to, the stress dependence assumed in eq. [61i]. Then, @ = AH would
no longer be true and the straightness of the Arrhenius line would imply a tempera-
ture dependence of AH, which just compensates that of yu. This seems unlikely.
Note, however, that the test of a temperature independence of mkT at constant
stress, according to eq. [61h], excludes the entire academic possibility.

Normalized Variables

If the Arrhenius plot (Fig. 61-1a or 61-2a) does not give straight-line plots,
this may be due to a temperature dependence of the activation energy or of
the preexponential with a simple origin. For example, many theoretical models




DATA ANALYSIS 239

KT d4n¥
b3 do Iy
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FiG. 61-6. (a) A modified Arrhenius plot according to eq. [61£], illustrating the
determination of g(o/u). (b) An apparent obstacle profile determined, first, from
the stress vs. strain-rate relation and second, via Fig. 61-6a.

predict that these terms should depend on the shear modulus, or (less fre-
quently) on other material properties such as an interfacial energy, whose
temperature dependence is roughly equal to that of the shear modulus. In
this case, one can properly introduce new variables o/ and pb3/kT. This
corresponds to a rate equation of the following kind:

7= 7o (c—') “exp (— AG); AG = ub3-g (i') [61¢]
. M kT 17

If this form is obeyed, straight lines are obtained in the modified Arrhenius
plot shown in Fig. 61-6a, from which one can read the functions g(o/x) and
y.{o/w). The apparent activation area follows directly from the stress depen-
dence of the modified Arrhenius slopes (eq. [43g]):

Ad _ _ dg(olu) 61m]
b? d(o/p)
Figure 61-6b schematically shows a normalized apparent obstacle profile that
is obtainable in this way, and another one obtained directly from the stress vs.
strain-rate relation as in Fig. 61-5. The two curves are different unless the
preexponential term is constant.

Instead of using specialized plots, one could also obtain the activation free
enthalpy AG, the apparent activation area Aa’ and the preexponential yg
directly from the operational parameters Q and m defined by eqs. {61a] and
[61b], according to the following formulae (see eq. {43t]):

P.M.8.—I
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o miriins
AG — S -[61n])
| dIn(wbd)
dinT
bAg — — 9AG(Q,m) [610]
do T
Oyl . obda’ [61p]
d1In (3) kT
pNT

An equation resembling [61n] was derived by ScHOECK (1965), except that it
contained non-operational parameters like y/y,, which can be used only when 5,
has been proved to be constant (or is a known function of operational variables).
Allowing any functional dependence of y, on ofu, we can derive eq. [61n] by expand-
ing Q (eq. [61a]) in the independent parameters chosen here:

Q0 _ aly dIn(kT/eb®) | 2lny
kT~ 3T w AT ' dIn(e/w)

dlny

_ 01n(o/u)
s Oln(kT/ub?)

r dInT

a

Term-by-term identification, using egs. [61b] and [61£], gives

Q _AG[ din@bY)], [ ding
kT~ kT [1 dinT ]+m ( dlnT)

which is the same as eq. [61n] (and similar to eq. {43t] derived previously). An
equivalent relation (neglecting the temperature dependence of b) was derived by
SUREK et al. (1974).

Ln (L 2
( ) Slope—%

kT %
()
Fi. 61-7. The appropriate master plot when y,, and its dependence on stress
and temperature (if any) are known.

Sometimes, 7, may in fact be found to be constant, or may be known (including
weak dependences on stress and temperature) to sufficient accuracy. In that case,
one would introduce 7/7, as a new variable. As in Fig. 61-4, one could then plot all
experimental results on a diagram (Fig. 61-7), in which all points should fall on a
single curve, presuming the value of y, has been chosen correctly. One may, in this
case, allow the free enthalpy AG to depend on stress and temperature in an arbitrary
fashion, so that the rate equation reads

7 _ AG(G,T) )
n (?o(a,T)) =T TkT [61q]
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One may then derive both the activation enthalpy AH and the activation free
enthalpy AG by the procedure shown in Fig. 61-8, which was suggested by WOBSER
and Frank (1968). (The curvature of the plot in their figures was inverted, see sec.
41.) Note that, in principle, the value of y, can be obtained from the extrapolation
of the low-temperature slopes of the curves (presuming the activation entropy goes
sufficiently close to zero at the temperatures reached). In practice, however, the
range of the plot that can be covered by experiments is too far away from the origin
to make this procedure meaningful.

Loy

£n¥,

FiG. 61-8. The Arrhenius plot according to eq. [61q].

When the temperature dependence of AG is assumed to be known, conversely,
one may allow any arbitrary dependence bf 7, on ¢ and 7. This is possible by an
iteration procedure suggested by SUREK er al. (1973a), who assumed the form of
AG given in eq. [61£], but an entirely general function y.(e, T). One may then derive
trial values of AH and AW’ from egs. [61a’] and [61b’], under the assumption of a
trial form of 7.(e, T); these trial values are inserted into eq. [43t] to determine AG;
when this is plotted, at constant strain rate, versus o and T, a new dependence
7.(o, T} is found from eq. [61q], which is then used for the next iteration, and so on.
SUREK et al. (1974) found, in fact, by this method that the form [61£] is obeyed fora
number of materials.

In summary, we have shown that four phenomenological equations [61f],
[61g], [61]], [61€] can be used to describe experiments with an equal degree of
operational certainty, although the degree of physical sophistication does
increase. The equation that has recently been used most often [61q] is of a
somewhat different kind in that it requires fairly detailed knowledge of one of

the parameters in the equation (y,), in exchange for which the other one (AG)
is then completely free.

Structure Variables

Any interpretation in terms of physical models will involve structural, or
internal parameters in addition to the variables ¢, T, and y used here. The two
most common ones are the glide resistance profile 7(Aa) (or at least its maxi-
mum value ), and the mobile dislocation density p,, (see sec. 34). As pointed
out in the beginning of this section, we have here assumed that they. are either
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constant (the “instantaneous change’ assumption), or that they have steady-
state values that are themselves unique functions of T and o.

In practice, both may change as a function of strain and time, and no
experimental observation of the operational parameters m and Q can be done
“instantaneously” or without involving any plastic strain. It is then an
important question how one should extrapolate the observations to either
“instantaneous” or “steady-state’” values; we shall deal with it in sec. 64.
Another question is, which of these limiting cases is the property of interest ?
In the following sections, we shall deal with two simple cases: first, that
changes in both obstacle structure and mobile dislocation density produce
negligible effects in the operational parameters, which turns out to be the case
when m is large; second, that changes in mobile dislocation density may
produce important effects (m small), but the obstacle structure can be assumed
constant. We do not treat in this article the case when changes in obstacle
structure through work hardening and recovery must be considered.

The Approximate Magnitudes of the Terms of the Arrhenius Equation

It is useful at this point to set some reasonable limits on the magnitude of
¥, and AG, and on the way in which they vary with stress and temperature.
One can do this only by invoking the models for thermally activated flow
processes developed in Chapters 2 through 5; but the limits we list below are
sufficiently wide that they include the entire range of variants that the models
could reasonably adopt.

The preexponential term, y,, has a value in the range between 105 and 101°
per second, that is

10° < y,[s~'] < 10*°. [61r]
This is arrived at by noting that '
Yo = VgYo

where vg is of the order 10! (limits 10'° to 1012 s~ !: see sec. 42). It varies
~with stress through the obstacle stiffness (roughly linearly), but is effectively
independent of temperature. In sec. 33, models for ¥, were discussed. Typically,
Yo has a value of about 10~#*1  varies with stress as (o/u)!*!, and is also
practically independent of temperature except through w(T). Assembling this
information gives the limits for y, noted above. It typically varies with stress
as (o/p)**2, contributing a part m, = 2 -+ 2 to the total stress dependence
we have called m. And it varies only weakly with temperature.

Most laboratory mechanical tests are carried out in the strain-rate range
107° to 1072 s~ %, since this is the range available on normal testing equip-
ment and within the time range of most laboratory experiments. This sets
limits to the value of Q/kT ~ In (y,/y) that are readily measurable:

16 < Iny/y < 35. [615]
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For later use we take as a typical valueA
In y/y = 20. [61t]
This means that around room temperature, where kT = J, eV, only activa-
tion energies in the range
04 < Q[eV] < 0.9 [61u]

are accessible to normal experiments.

One might wish to include tests using special equipment, spanning a wider strain-
rate range from 108 to 10%/s. This widens the limits on In Yoy tO

8 < Inj,/y < 40 [61s’]

and, at room temperature, makes activation energies in the range 0.2 eVtoleV
accessible. Note that even this is a rather limited range—if the activation energy
of the rate-controlling step lies outside this range, the strain rate is either too slow
or too fast to be measurable.

Using the result [61t], we can immediately assign an order of magnitude to
readily measurable activation energies AG(q,T') of roughly 20kT. Their stress
dependence was discussed in sec. 43, where it was shown that it can often be
represented by (eq. [43w])

)

where 0 <p S 1 and 1 £q 52 (eq [43w']). For the most commonly
encountered cases, this typically reduces to (eq. [43w"]).

AG(c) = F, (1 - (:-)m)m.

Its typical temperature dependence is more difficult to characterize; it depends,
as discussed in secs. 43 and 61, on the way in which the physical constants
that enter F, and # vary with temperature. One common case is that whick
arises when the shear modulus is the only important contributor to a tem-
perature dependence: then AG decreases slowly with increasing temperature,

falling to roughly half its room temperature value at the melting point of the
material.

62. ACTIVATION ANALYSIS FOR RATE INSENSITIVE MATERIALS

The operational parameter describing the rate sensitivity of the flow stress
(or rather the rate “insensitivity’’), was defined in eq. [61b] as

dlny

m = [62a]

dlnaolr

It is often found to be quite large: for example, in precipitation hardened or
P.M.S.—1"
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pure fcc materials at room temperature, m is of order 100. In this case, a
change in strain rate by a factor of 10 produces a change in flow stress of
approximately 2%. Similarly, a 109, change in temperature produces
approximately a 29, change in flow stress; this can be seen by inserting
Q/kT ~ In y,/y ~ 20 into eq. [61c]:

dlno| o _ 2

L= 2~ T [62b]
JInT|Y mkT m

Of course, one cannot really speak of a rate-sensitive material. It is only in
certain ranges of stress and temperature that a given material exhibits a large
value of m—Ilarger, say, than 20. For these ranges certain generalizations,
which we now set out, can be made.

Data Reduction

In principle, contributions to m could arise from a stress dependence of the
preexponential terms and from that of the activation energy (eq. [61b']). We
pointed out at the end of sec. 61 that the preexponential contributes at most
4 to m. When the material is rate insensitive, as we have assumed here, with a
total exponent m > 20 (and typically about 100), we may assume that the
stress dependence of the preexponential terms is negligible in comparison with
that due to exponential terms

o= 0ol e, T [62c]
dlne T
or equivalently
M7 _ pr 2% g [62¢')
o do |t
so that
kD7 L opag, [62d]
o T

The last equation permits a very easy and direct quantitative determination
of the glide resistance profile from strain-rate change tests at various tempera-
tures.

To get the widest possible range of the glide resistance profile, one must test
the strain-rate sensitivity at different temperatures. Any dependence of the
profile itself on temperature (Fig. 43-3a) then becomes important,

We have seen in the last section (eq. [61q]) that the first-order effects are
well accounted for by assuming the temperature dependences of the shear
modulus and the Burgers vector to be the main effects. The appropriate
variables are then o/ and kT/ub3. The assumption can be tested by observing
straight lines in the normalized Arrhenius plot (Fig. 61-6a).
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The approximate constancy of y, can now be tested, and its value found, by
plotting the normalized activation energy g = AG/ub3, as it is obtained from
the modified Arrhenius plot (Fig. 61-6a), versus temperature at constant
strain rate, in the manner of Fig. 61-3: it should be a straight line through
the origin.

To make the best use of the data, one should plot them all on a single
diagram of o/u versus the combined parameter (kK7/ub®) In (y,/7), as in Fig.
61-7. This is made possible by the assumption of a constant y,; its approxi-
mate value can also be found by trial and error until all points fall on a single
curve in this diagram.

Qualitative Separation of Mechanisms

Some important qualitative conclusions about the nature of the obstacles
can, however, immediately be deduced from the fact that m is large. The
meaning of the large value of m, in its mechanistic interpretation (62{], can
be gauged by a slight expansion of that equation:

m~ AWAG AW, 7 [62¢]
. AG kT AG y ’
The logarithmic term is typically about 20 (eq. [61t]). Since m is supposed to
be larger than 20, the apparent activation work AW’ = obAa’ must be larger
than AG. Figure 62-1 shows two ways in which this can happen.

First (Fig. 62-1a), the applied stress may be near the mechanical threshold.
This must happen for all manner of mechanisms at very low temperatures.
When the temperature of the experiments is not “very low”, it may still be
low compared to the temperature T, that corresponds to the total activation
energy of a short-range obstacle. (This temperature may be far in excess of the
melting point; an example is provided by large precipitates.)

Second (Fig. 6/-1b), the glide resistance mechanism may be long-range in
nature (i.e. have infinite total activation energy); or it may consist of two
components of which one is long range or even ‘“athermal’’. In this case, the
mechanical threshold may be considerably above the applied stress.

Figure 62-2 shows the normalized stress vs. temperature diagram for three
typical mechanisms: (a) a short-range one with a high 7, (10 times the range

shown on the abscissa); (b) a truly long-range mechanism; and (c) a short- -

range mechanism superimposed on an athermal plateau. The constants were

- chosen, within a reasonable range, to make the curves look similar. It is seen .

that the plateau in curve (c) can at best be distinguished in the top 209 of the
temperature range.

A more characteristic behavior of a two-component mechanism is evident
when m is plotted versus (inverse) temperature at constant strain rate (Fig.
62-3): as the athermal mechanism is approached, m must rise again. This
effect should be seen even at about half the temperature where only the

/d

/2
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{a)

bAa’

bAq’

FiG. 62-1. Two examples [(a) and (b)] of obstacles for which AW’ > AG, when

m is large.
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Fi1G. 62-2. A flowstress versus temperature diagram in proper normalization for
rate insensitive materials. The three curves shown are:
(a—dotted line): for a “‘short-range” obstacle with a high total activation energy

and a stress dependence
AG = pb? [1 - (")‘”]’
. 3 .

(b—solid line): for a “long-range” mechanism such as unlocking of a continuously
pinned dislocation, with an activation energy

s — 1 U=ty
of?

(c—dash-dotted line): for a superposmon of a short-range obstacle with an
athermal mechanism characterized by # Py = F2:

so= 8 [1= (=) T
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Fi1G. 62-3. The exponent m, the inverse relative strain-rate sensitivity of the flow
stress, as measured at a given standard strain rate over a range of temperatures,
for the three types of mechanism illustrated in Fig. 62-2. For a two-stage mecha-
nism (c), m goes through a minimum at roughly half the temperature where the
short-range mechanism ceases to contribute to the flow stress.

o/l

— s 4nle/)

0.1-e/7

FiG. 62-4. A diagram designed to separate mechanisms with an infinite total
activation energy (b) from those with merely a large one (a). The two-stage
mechanism (c) also appears more abrupt than in Fig. 62-2. (The formulae intro-

duced in Fig. 62-2 were u

sed.)
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athermal mechanism survives. The other two curves may not be experiment-
ally distinguishable, although they exhibit a very characteristic difference in
their extrapolation to high temperatures: in the short-range mechanism with
the high 7, (curve a), m should continuously decrease to low values (it would
reach zero at T,); but in the long-range mechanism (curve b) m extrapolates
to In (y,/y) at infinite temperature: it always stays above 20. Only in the “limit-
ing long-range mechanism”, namely where AG o In (#/0), would one obtain
an exactly straight line through the origin in this diagram.

A final diagram that may help separate the mechanisms discussed here is
one of o versus o- 7T, suitably normalized (Fig. 62-4). If the activation energy
indeed has a 1/o-dependence, as it does for dislocation unlocking mechanisms
(curves b in Figs. 62-3-62-4), then this dependence is eliminated in Fig. 62-4
and the remaining function is the dependence of the numerator on ¢, which
should be like that of any short-range mechanism (see Fig. 43-9). On the other
hand, a short-range mechanism with a high 7, should show a characteristic
reversal of curvature (curve a in Fig. 62-4), and the two-stage mechanism
should show an accentuated plateau (curve c).

Determination of Mechanistic Parameters

Figure 62-4 already provided the final answer, if it indicated a dislocation
unlocking mechanism or other very long-range interaction. In simple cases,
one may obtain clearer evidence for a particular functional dependence of
" 0AG(s) by raising the coordinates in Fig. 62-4 to various powers until the data
fall on a straight line. However, the large value of m itself implies that the
stress range accessible to experiments is not very wide. Most useful informa-
tion about the binding potential can be obtained by going to low temperatures.

If the analysis of Figures 62-2 through 62-4 pointed towards short-range
obstacles with a high T, it is probably a set of large, strong, widely spaced
discrete obstacles such as precipitates, or possibly radiation damage or forest
dislocations. The force vs. activation-distance diagram of the obstacle may
then be obtained by plotting (o/w)?/3 vs. (Aa’/b?) (o/uw)'’3, as in Fig. 44-6, and
phenomenological forms for it may be obtained by using the procedure
prescribed in Fig. 44-7. However, as indicated in Fig. 62-2, the very rate
insensitivity prevents one from getting the lower portion of this profile. Thus,
the exponent p in the phenomenological description [43w”] of the activation
energy cannot be obtained. One may set it to its maximum value £ for discrete
obstacles (eq. [44€']) and write

AG = Fo-{l _ (%)m}q. [621]

However, the constant F, would be the total activation energy only if p were
really % for the entire obstacle profile; if p is lower than this maximum value,
the obstacle has a ““tail”” at low stresses, and F, becomes a lower bound to the
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real total activation energy:
E <F, . [62g]
Finally, the analysis of Figs. 62-2 through 62-4 may have indicated the existence
of a two-stage mechanism. We have emphasized before (sec. 43) that two mechz}-
nisms that relate to the same obstacle are, in principle, not separable by macroscopic

measurements. However, if they relate to two different agencies, such a separation
is possible if one can control the density or spacing of at least one of them.

%(CI)

Tlcy)

T .

Fic. 62-5. The separation of two contributions to the flow stress by varying
the density ¢, of one of them: (a) single profile; (b) two profiles, additive flow
stresses; (c) two profiles, additive densities.

If at least part of the glide resistance profile is due to discrete obstacles, we can
make use of the fact that their contribution to the flow stress varies inversely as their
spacing, whereas their contribution to the activation area varies linearly with the
spacing. This leads to a procedure, outlined in detai! in sec. 44, of testing whether
these obstacles are the only essential ones or, if they are not, of separating the
various contributions.

If one can vary the area density of the discrete obstacles while measuring
both flow stress and (apparent) activation area, one must plot b%/Aa’ =
b%0/kTm (a measure of the reciprocal of the obstacle spacing) vs. =, the flow
stress at a standard temperature and strain rate, as this density is varied (Fig.
62-5): if a straight line through the origin is observed, the obstacles whoes
density was varied provide the only contribution to both flow stress and
activation area. If the points lie on a line, straight or not, that extrapolates to
a positive intercept on the abscissa, there is at least one other contribution to
the flow stress, which is less thermally activated (or not thermally activated
at all). If the intercept is negative, another mechanism must be primarily
responsible for the rate dependence. In Figs. 44-8 through 44-13, we have
given the prescription for a separation of the respective contributions.

If by this procedure two separate contributions were found, the complete
7,~Aa, diagram for the rate-controlling mechanism can be determined. One
may do this by using a phenomenological relation of the kind (eq. [43w"])

AG = Flv'{l — (" - ’2)°'}q [62h]

A
T — Ty

where q essentially describes the shape of the top of the r-Aa diagram
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(q =1: flat; g = 3: rounded; q = 2: pointed). This parameter should be
easily found, now that the top part of the diagram is well known. Since, when
7, is known, the rate-controlling mechanism can be investigated in its entire
stress range, p, can also be determined.

One may then proceed to get the force-distance diagram, if the rate-controlling
mechanism is based on randomly dispersed discrete obstacles, by plotting

o—1\?3  Ad’ [0 — 7,\1/3
Vs, —-
© b? n

which are proportional to K, and Ay,, respectively (Fig. 44-6).

If activation energies are also measured, it must be remembered that this case
of a two-stage profile (sec. 43) is the one in which there may be large discrepancies
between Q ~ AH and AG, and (near the plateau) between —(dAH|do)|r (as deter-
mined from the stress dependence of the Arrhenius slopes) and bAa’. Again, this
could be avoided by using so-called “effective stresses” o—r, (eq. [43c]) which,
however, gives new information only if the activation entropy is not well described
by the temperature dependence of shear modulus and Burgers vector.

63. ACTIVATION ANALYSIS FOR RATE-SENSITIVE MATERIALS

In contrast to the case discussed in the last section, we shall deal here with
experiments in which the relative change in flow stress upon a change in strain
rate or temperature is substantial so that, typically, m < 10. Again, m could
in general depend on stress and temperature, so that we are not strictly deal-
ing with a particular class of materials; we merely refer to materials that have
a low value of m over at least part of the range of the experiments.

Qualitative Identification of Mechanisms

In the general framework of dislocation kinetics, we have encountered one
region in which m may be low (Fig. 63-1): at stresses above the mechanical
threshold, where phonon drag effects become important. This region can be
further identified by two phenomenological observations (Fig. 63-1):

0<o0; M _o [63a]
o\T
This is a region of interest for the study of lattice drag, but it is irrelevant to
macroscopic flow in steady state under normal test conditions.

When the conditions [63a] are not obeyed, thermal activation controls the
strain rate, and we can use the identification [61b’] of m with model para-
meters. Since we have seen that the stress dependence of the preexponential
factors m, is typically 2 + 2, this can no longer be considered a negligible
contribution to the total m. But the fact that this reduces the contribution to
m due to the activation work even further allows one to again draw important
qualitative conclusions about the nature of the glide resistance profile.

Not surprisingly, these conclusions are the opposite ones from those arrived
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FiG. 63-1. Above the mechanical threshold #, the flow stress is controlled by
phonon and other drags and increases with increasing temperature. This leads to
negative expsrimental activation energies.

bAa’

F1G. 63-2. Diagram illustrating the situation when AW’ < AG, when m is small.

at for large m(Fig. 62-1): the apparent activation work AW’ must now be small
compared to AG (eq. [62¢']). Thus, we must be concerned with the lower
portion of the glide resistance profile, and it must necessarily be of the short-
range kind (Fig. 63-2). :

It is evident that in the temperature range where m is small, it is a reasonable
aim to obtain the total activation energy F, of the process and the shape of
the “tail”” of the profile, but not the maximum glide resistance and the shape
of the “top””. Of course, lowering the temperature would make the top of the
obstacle accessible to measurement—although m would become large in the
process and, since the obstacles now must be small, inertial effects could make
measurements difficult.

Working in the lower range of the obstacle profile implies being near the
temperature T, (eq. [450]). Thus, from eq. [61t], the order of magnitude of
F, is given by

F, ~ kT'In"° ~ 20kT. [63b]
Y

That is, about 0.5 eV at room temperature,
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The average activation area must then be, in order of magnitude,

Ba  Fo kL ek [63c]
b2 £h3 pb*

At room temperature, this would be between about 5 and 200 for interesting
values of 7.

‘Contribution from Glide Resistance Profile

When m is small, the stress dependence of the various preexponential terms
is not negligible; in fact, it may be dominant. It is then hopeless to obtain a
profile Ad'(s), even in its lower range, from m/o, i.e. from strain-rate changes.
On the other hand, it is always possible to get

OAH| _ 3Q

63d
do It do [63d]

T

so long as the femperature dependence of the preexponential terms is known
or negligible (egs. [61a], [61a"]). Fortunately, we have seen that a small value
of m implies a short-range obstacle, and that this, in turn, suggests that the
stress dependence of the activation entropy may be negligible (eq. [430])
which makes

_OAH
do

I

T Jo

bAa’ ~ [63d']

T

The obstacle profile may thus, in principle, be obtained from the stress

o?
(a)
\ V
y Q'
Ut
oP
(b)
T

Tola

FiG. 63-3. (a) The appropriate way to extrapolate data for Q as a function of
o to zero o, in order to obtain U,. (b) This extrapolation is inappropriate because of
the curvature of the plot at small o.
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dependence of the Arrhenius slopes. The very fact that m is small, however,
makes AW’ < AG (eq. [62¢’]) so that the relative variation in @ with stress
is bound to be small. It is, in fact, frequently neglected.

If it is, nevertheless, measurable, one should try to plot an appropriate
power of o against an appropriate power of Q such that the diagram becomes
a straight line and can be extrapolated to zero stress to obtain U, (Fig. 63-3a).
This is better than plotting o against T to find T, (Fig. 63-3b), since y, can now
not be assumed constant. For the special case that reverse jumps are impor-
tant, we had seen in Fig. 45-4 that T, would be virtually impossible to
determine. ‘

We have here neglected to account for the variation of elastic constants or
Burgers vector with temperature. This is reasonable, because a small m
implies a strong temperature dependence due to thermal activation alone (eq.
[62b]). However, the appropriate corrections can easily be made, in which
case Q is replaced by g and U, by F,/ub>.

'Contributions from Preexponential Terms

The total stress dependence of all preexponential terms is easily obtained
from egs. [61b'] and [63d']:

dln vy, =m—1_ a0 .

dlno|T kT dlno|r

[63¢]

Since we found that T, must be near the test temperature when m is small,
reverse jumps may well be important (sec. 45). Then the preexponential term
must be modified from eq. [61le] according to eq. [45j] (presuming o >

TSTOR):

oba
Vo = Vo VG = - : 63f
Y Yo VG T [63f]
The two main contributions to a stress dependence of y, are: the mobile
dislocation density p,,; and the frequency factor vg through the normalized
stiffness C of the obstacle (egs. [420], [42p], [42v]). Thus,

diny dinp dinC
[\] :1 m - .
dlneo|r +dlna+dlna

[63¢]

One may be able to separate these contributions by the following mechanistic
assumption: the mobile dislocation density cannot change instantaneously. This state-
ment is almost self-evident, if the meaning of ‘‘mobile dislocation density” is as used
in this treatise, viz. the pool of all dislocations that may potentially be activated to
produce strain of the required kind during the experiment. Any change in the
number of these dislocations requires both time and strain. As pointed out before, if
the density of moving dislocations changes instantaneously, it is better treated by an
activation term itself.

. Assuming, then, that both an instantaneous change in stress upon a change in
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Fic. 63-4. Tllustration of the gradual tranmsition from “power-law creep” to
“exponential creep” when the stress dependence of the activation energy is fully
included.

strain rate (or any other of the operational derivatives) and an asymprotic change
corresponding to the steady-state density of mobile dislocations can be measured,
let us designate these by the superscripts i and a, respectively, on the derivatives.
Our mechanistic assumption then amounts to saying that

1
lmpnlt 0 [63h]
8 Ine T,¢
or
dlny['  dny .
Finolr,  dlno|r.,. [63il

If all other pre-exponential terms are instantaneously adjustable, this makes it
possible to separate the effects of a change in mobile dislocation density from all
others.

The stress dependence of the steady-state mobile dislocation density follows from

Jdln pm !

dlno

* Jdlny

_Olny _
T dlno

,_31110

(63i]

To be consistent with the general model presented here, the difference {63j] must be
of order 2.
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As pointed out in sec. 61, the stress dependence of y, contributes, typically,
2 4 2 to m. The rate equation then becomes

y = Ac**? exp —

AG
kT
[63K]
H

= A'0’*2exp —

where 4 and A’ are constants. This is a form frequently encountered in
measurements of high-temperature creep (see, for example WEERTMAN, 1968 ;
or MUKHERIJEE et al., 1969).

As was discussed in detail in sec. 45, the activation energy in eq. [63k]
should still, in principle, be stress dependent—although this stress dependence
matters less and less as the stress is decreased. To show the kind of effect to
be expected, we have plotted in Fig. 63-4 a log 7 versus log o diagram for two
typical relations AG(o), in the low-stress range. For the very short-range
obstacle (p = 1), the slope is very close to 3 over a significant range; for the
longer-range one, m varies continuously from about 3 at ¢ = 10~34# to about
6 at o = #/10.

64. STRUCTURE CHANGES AND EXTRAPOLATION PROCEDURES

We have, throughout this entire article, dealt with the constitutive relation
of a material in a given state or at a given structure (equation 1a), and have
deliberately excluded from treatment any changes of structure during the
tests (eqs. [1b]). Thus, for example, we have assumed that any solid solution
is stable and does not precipitate; that any precipitate or dispersion is stable
and does not coarsen or dissolve; that solute atoms do not segregate to, or
move with, moving dislocations; that the grain size does not change during
the test; and so on. One kind of structure change, however, cannot be avoided
in any tests of plastic properties: changes in the density and distribution of
dislocations. Even if we do not wish to treat these processes in any detail, we
must give an operational definition of what is meant by “tests at constant
structure”; i.e. we must specify a test in which the structure does not change,
or prescribe a back-extrapolation procedure by which the changes in struc-
ture are eliminated from the results.

We have, from section 22 on, used the dislocation glide rate y as if it were
the macroscopic strain rate € (except for a trivial orientation factor). In fact,
y is not an operational variable: for example, elastic and anelastic strain rates
must be subtracted from the measured variable ¢ to obtain the plastic strain
rate. While, in principle, the plastic strain can be measured after unloading,
there is no such easy prescription for the plastic strain rare. Another—and
more important—reason for a discrepancy between a macroscopically
measured strain rate ¢ and a meaningful glide rate y is the possible existence of
macroscopic heterogeneities in deformation. While, again, we have excluded
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a treatment of the many aspects of this problem from the present text, we
shall outline below one particularly simple and important example: the
steady-state propagation of a Liiders front.

Work Hardening

Figure 64-1 shows a typical stress—strain diagram obtained in a tensile
test. Upon the first loading, it shows a rapid curvature, indicating the transi-
tion from elastic to plastic deformation. The slope of the stress-strain curve
(Fig. 64-1) changes in this range by a factor of the order of 100. It is common
(and correct) practice to obtain the “yield stress” of the material by back-
extrapolating the stress strain curve to zero plastic strain.

T,y = constant

~%
-

Unloading
and
reloading

FIG. 64-1. Typical stress-strain diagram at constant temperature and strain fate, on a scale
where the elastic slope appears to be infinite. When all (re)loading transients have been
eliminated, the curve becomes a locus of the flow stress as a function of the prestrain.

If the specimen is unloaded after a certain amount of plastic strain and
immediately reloaded, an initial transition region also occurs, often somewhat
different in character; an example is shown in the Figure. The important
observation is that, after this initial transition region (which may take
fractions of a percent strain), the plastic curve follows precisely the forward
extrapolation of the curve obtained before unloading. The back-extrapola;cd
stress at zero plastic strain in the second test is called the current flow stress.
A diagram looking very similar to Fig. 64-1 may thus be obtained that is a
locus of the flow stress as a function of pre-strain: in principle obtained by a
series of frequent unloadings and reloadings (allowing enough strain to take
the material through the transient each time). This is the work-hardening
diagram = versus y.

Work hardening is due to a change in the density (and possibly the arrange-
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ment) of dislocations, through their effect on the glide resistance diagrams.
It is a property of the dislocation structure that is retained in the unloaded
state. This change in the “static’’ structure must be distinguished from the
dislocation rearrangement occurring during loading and unloading: it is
of a “dynamic” nature. For example, dislocations may become “mobilized”
or generated, and they may multiply or form dynamic pile-ups. We have
discussed some of these dynamic changes in-sections 24, 32, and 33. Our
concern with long-range slip has caused us to concentrate on a situation when
these phases have reached their respective steady states. The adjustment of
the dislocation structure while this steady state is being achieved is one cause
of the transients observed after loading or reloading in Fig. 64-1. In earlier
discussions, we have eliminated these effects by extrapolating through them
(except in one case discussed in section 63). '

The changes in the dynamic dislocation structure are different in principle
from changes in the “‘static” structure due to work hardening: they occur in
response to the change in the external boundary conditions on a specimen
whose initial state is entirely characterized by the “static” structure before the
change. Thus, dynamic structure parameters are not ‘‘parameters of state”
and no macroscopically useful information can be derived by attempting to
perform experiments at constant dynamic (as well as static) structure. Such
experiments could, of course, help in the identification of mechanisms, but it
is doubtful that there is any way of performing them with absolute confidence
that no aspect of the structure has changed.

Abrupt Changes in Boundary Conditions

The kinetic laws we have discussed in earlier chapters are concerned with
the relation between stress, temperature and strain rate. To measure such
relations, at least one of these variables must be changed deliberately and the
response measured. It is of no use, for this purpose, to obtain complete work-
hardening diagrams of the kind shown in Fig. 64-1 for different strain rates or
temperatures: the change in structure with strain may well depend on the
strain rate or temperature itself. In fact, many work-hardening diagrams have
a stage (labeled II in Fig. 64-1) whose slope is insensitive to strain rate and
temperature (and approximately linear); in this stage, the difference between
different continuous curves does allow at least approximate conclusions
concerning the relation between flow stress, strain rate and temperature. On
the other hand, in the following stage III, which exhibits a continuously
decreasing slope, the work hardening curves and the corresponding structure
changes are quite sensitive to strain rate and temperature. Here, one can
derive relations between strain rate, stress and temperature “at a given
structure” only by imposing an abrupt change in one of the variables.

As an example, Fig. 64-2 shows an abrupt change in strain rate and/or
temperature at two places in a tensile test. The first is after a prestrain y, in
stage II of work hardening. Here, a transient of the same general character as
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Fic. 64-2. Two stress—strain curves with an abrupt increase in strain or decrease in tempera-

ture: one after prestraining into stage II, the other into stage III of work hardening. Extra-

polations of the curves at constant strain rate and temperature are shown dashed. Various

methods of back-extrapolation to the amount of the abrupt change are indicated by capital
letters.

upon unloading and reloading during a test is frequently observed; namely,
a small overshoot and subsequent drop in the stress. There is no difficulty
in extrapolating the “long-range” stress-strain curve back through the
transient and thus obtaining the flow stress at A (see, for example, MAKIN
1958, HaASEN 1958, DienL and BERNER, 1960). Conversely, it is possible
(although only with very hard machines and very good resolution of mea-
surement, see MECKING and LiICKE, 1966) to obtain the “instantaneous”
stress change at point I before the dynamic changes leading to the transient
become operative (see section 63).

The situation is much more complex after straining into stage III, at the
pre-strain y,. An increase in strain rate (or a decrease in temperature) here
leads to at least two transients: one of the same kind described before and
another one that is much more gradual and may extend over several percent
of subsequent strain. Its characteristic is an initial severe change in work-
hardening rate from the one before the abrupt change, and a gradual approach
of the work-hardening rate to the “normal” one corresponding to the new
strain rate or temperature. Here, we have three possibilities of extrapolation:
the “asymptotic flow stress’” at A, the “instantaneous stress change” at I,
and the “long-range extrapolation” at L. For completeness, we have also
indicated in Fig. 64-2 the flow stress of a continuous stress-strain diagram at
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Fi1G. 64-3. The strain-rate sensitivity of the stress as defined by various measurement and
evaluation methods, as a function of the flow stress attained before the change: (a) Silver
(MECKING, 1967); (b) copper (C. Y. CHENG, unpublished results, summarized in CHENG and
Kocks, 1970); the symbol R refers to stress relaxation tests to be discussed later; (c)
aluminum (H. S.. CHEN, unpublished results, summarized in Kocks et al., 1968).

the new strain rate, taken to the same pre-strain y,, at point N. As we dis-
cussed above, this stress is of no relevance to the kinetic law at a given
structure.

From the point of view of describing the flow stress for long-range: slip,
the extrapolation to A would be consistent with the previous treatment.
This is hard to obtain in practice—primarily because the stress-strain dia-
gram is rather strongly curved in the initial part of the long transient. Other
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authors (e.g. COTTRELL and STOKES, 1955; BasinskI, 1959; THORNTON et al.,
1962; MECKING and LUCKE, 1966) have preferred the extrapolation I, or a
use of the “upper yield stress’ after the change (which depends on the hard-
ness of the machine). In very few experiments has more than one method been
used. Figure 64-3 shows three such cases, plotted as a function of the flow
stress reached during the pre-straining. It is seen that, in all cases, one may
claim a proportionality of the stress changes Ao obtained from the different
methods of extrapolation; the absolute values differ by about a factor of 2.

It thus appears that the method of extrapolation chosen is not of critical
importance in these cases—although it is not clear that this can always be
relied upon.

Stress Relaxation

The stress relaxation test is a special case of an abrupt change in boundary
conditions: the sudden arrest of the cross-head in a hard machine. Any
further plastic strain in the specimen is now coupled, by interaction with the
elastic strains in both the specimen and the machine, to a decrease in load.
If one plots the logarithm of this negative slope in the resulting stress-time
diagram versus the stress, one immediately has the kinetic diagram whose
slope is related to the operational activation area; if, instead, the stress is also
plotted logarithmically, the slope is the operational parameter m. To translate
the absolute magnitudes on the logarithmic stress rate axis to logarithmic
strain rates, it is easiest to make the back extrapolation to the point of unload-
ing match the prescribed strain rate in the preceding tensile tests.

The continuous nature of the stress relaxation tests, once initiated, makes
it especially attractive for a derivation of the stress versus strain rate relation.
Moreover, an especially wide range of strain rates can be obtained (provided
the experimental difficulty of keeping the temperature sufficiently constant
has been solved). The chief advantage of the stress relaxation tests, however,
as seen by its many recent proponents (e.g. FELTHAM, 1961 ; GuIU and PRATT,
1964; HuLL and NOBLE, 1964; SARGENT, 1965; GUPTA and L1, 1970; CHENG
and Kocks, 1970; Lee and HART, 1971; YAMADA and Lx, 1973) is that struc-
tural changes during this test are minimal or non-existent; for example,
reloading after stress relaxation will, after a short transient, lead to a con-
tinuation of the previous work-hardening curve.

This very advantage may be a serious drawback in disguise. The absence of
structural changes is a direct consequence of the small plastic strain accumu-
lated during stress relaxation: it is usually of the same order as the elastic
strain in the specimen. Dislocations would thus propagate only through the
relatively easy regions in the slip plane (the “soft spots™), and the plane glide
resistance may never be reached (section 44). The stress relaxation test, thus,
corresponds more closely to the extrapolation marked I in the strain-rate-
change tests (Fig. 62-2). In fact, it is probably a better test if one does attempt

to measure properties at constant dynamic structure, rather than in long range
slip. ,
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Experiments where the activation parameters derived from stress relaxa-
tion tests were compared with those of strain-rate-change tests (HuLL and
NosLE, 1964; CHENG and Kocks, 1970) support this contention (Fig. 64-3b,
letter R). They show that, again, the results of stress relaxation tests correlate
with those on the asymptotic flow stress in this case, even though the absolute
magnitude is different by approximately a factor of 2. Once such a correlation
has been established for a particular material, the stress relaxation test is
undoubtedly the easiest for a determination of the kinetic law for this material.

One additional difficulty arises in stress relaxation that dces not occur for
any of the other tests of the kinetic properties: that is that the rare of stress
change is initially quite large, especially in the hard machines best suited for
the test. We have seen in section 33 (eq. [33hh]) that this leads to additional
terms in the rate equation. (For a more thorough discussion see Kocks, 1966,
1970b, 1974b; LAw and BESHERS, 1972).

[ gy,
Liiders Front Propagation v /

Tensile tests of many materials in an annealed or strain-aged state show an
initial drop in stress followed by a finite strain at essentially constant stress.
Under various circumstances, this behavior can be the consequence of various
causes, such as dislocation unlocking, solute dragging by dislocations, etc.
The behavior is accompanied by more or less heterogeneous deformation:
plastic deformation starts at one or more isolated places on the specimen
and spreads through the volume by the propagation of one or more Liiders
fronts. When more than one front is nucleated, the flow stress shows marked
variations. (Other variations in flow stress may be caused by solute dragging.)
All these effects were explicitly excluded fromtreatment in the earlier chapters.
A particularly simple case, however, may serve as an illustration of the prob-
lems involved, and a possible avenue for their solution.

Consider a single Liiders band spreading from one end along a very long
specimen, in steady state at a constant velocity v;,. When it has reachéd the
other end of the specimen, homogeneous deformation ensues; the strain at
the transition can be macroscopically measured and is called the Liiders strain
¢1.. The macroscopic extension rate is then

L=uv e [64a]

Since L and ¢, can be measured macroscopically no microscopy is necessary
to determine the front velocity v;, (MooN and VREELAND, 1968); if it is separa-
tely measured and eq. [64a] found satisfied (VEREL and SLEESWYK, 1973),
this confirms the existence of steady state. ‘
What we are interested in for the determination of kinetic laws of this
process is, however, not the front velocity but the local strain rate. For simpli-
city let us first assume that a width w can be defined in the neighborhood of
the front, in which all the plastic deformation occurs. (For a more precise
treatment, see below.) The macroscopic extension rate is then linked to
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the strain rate in the front by ‘

L= ¢ - w. ' f64b]
It is seen that information obtained by measuring the macroscopic extension
rate I can furnish information about the local strain rate only if something is’
known about the width of the front. In principle, this could be measured
metallographically (though it would have to be measured during the deform-
ation, not after unloading); but here we have endeavored to use only macro-
scopic measurements for the determination of our operational parameters.

Of particular interest is the question of the stress changes associated with
an imposed change in extension rate. In principle, they could be due either to
a stress dependence of the strain rate or to a dependence of the front width on
stress or strain rate. While we know of no argument that eliminates the latter
possibility entirely, it would appear unlikely that a variation in extension rate
by many orders of magnitude can be achieved by a variation of the front
width only, for specimens of reasonable size. Furthermore, it seems self-
evident that the front width cannot change instantaneously. If it tends to
increase with increasing stress, a new yield point should be observed upon an
increase in rate; if it tends to decrease with increasing stress, a rounded
transient should be observed. In fact, what few experiments there are do not
indicate a strong tendency towards either kind of transient: some recent
authors obtained an increase of width with stress (DELWICHE and MOON,
1972), some a decrease (PREWO ef al., 1972) and some no noticeable change
(VEREL and SLEESWYK, 1973).

The relation between strain rate and stress can thus be derived from the
dependence of the extension rate on stress with a reasonable amount of
confidence—the more so the more it is possible to back-extrapolate to instan-
taneous changes. However, the possibility of other changes cannot be elimin-
ated with certainty. Experiments in the Liders region and immediately past
it have tended to confirm the equivalence—with one exception (NOBLE and
HuLL, 1964). These experiments, however, used stress relaxation which
should not be expected to reflect steady-state Liiders band propagation.

We shall show below that the very existence of heterogeneous deformation
can, without involving any rate changes, give some basic information on the
strain-rate sensitivity of the material. This is based only on some very general
principles the validity of which can, in addition, be macroscopically checked.
The result makes it possible to determine the rate sensitivity co-efficient m
from a mere measurement of the Liiders strain and the initial work-hardening
rate. Conversely, a knowledge of the work-hardening rate and the strain-rate
sensitivity of a material makes it possible to predict the amount of Liiders
strain if any.

HART (1955b) has shown that force equilibrium along a specimen undergoing
nonuniform uniaxial strain demands that
Jda

(6~0)-¢ +5+¢=0 [64c]
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FIG. 64-4. Steady-state propagation of a Liiders front: (a) distribution of strain, (b) distr.i-
bution of strain rate, along the length of a long specimen; (c) associated stress-strain
diagram with various definitions.

A . . . . 0
within the deforming region, where 8 is the work-hardening rate (a—:) and the
é
prime means differentiation with respect to distance along the specimen. Steady
state at every point demands
¢ =1y, - €. [64d]
Inserting the derivative of [64d] into [64c] and remembering that the flow stress of
most materials depends more closely on the logarithm of the rate (m/o) rather than
on the rate itself (0o/d¢), we can write
” o — .
—S=m-2=2. 2 [64¢]

€ g DL

Solution of this differential equation for constant @ and m gives an exponential
dependence of strain on distance (Fig. 64-4a). Metallographic observations have
consistently indicated that there is substantial deformation behind the front, but
none ahead of it, in agreement with this result.
. If the initial strain rate gradient is used to define an effective width of the front
w (Fig. 64-4b), egs. [64a, b, and e] give the result
1 Oc

= 64t
m [

TS.et -Fém‘-u‘r)tc weet prge !
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This shows that the strain-rate sensitivity coeficient m can be derived from a
macroscopic measurement of the Liiders strain and the work-hardening coefficient
6. If © is indeed independent of strain rate over the range that occurs during Liiders
extension (as we assumed by assuming it independent of distance), then it can also N
be measured immediately after the Liiders extension, as the initial slope of the work-
hardening curve that follows (Fig. 64-4c). This assumption can be tested by com-
paring the initial work-hardening slopes in (continuous) tests at different strain
rates. It is a very good assumption at lower temperatures where  is large (of order
#/100), in stage IT of work hardening. In this same region, ® > ¢ for most materials
so that the second term on the right-hand side of eq. [64f] can be neglected with
respect to the first.

When the work-hardening rate immediately following the Liiders extension is a
good measure of the value in the spreading front, then @ - ¢ is the difference Ao
between the lower-yield-point stress and the flow stress that would be obtained by
back-extrapolation of the work-hardening region to zero strain (Fig. 64-4c), and
thus :

1 Ag
— = (641 T
Equations [64f and g] can also be read the other way around: when the strain

dependence and the strain-rate dependence of the flow .stress (in homogeneous
deformation) are known, the length ¢, and the height Ao above the continuous
curve, of the Liiders extension region can be predicted. This is, of course, predicated
upon the fact that the stress first rises above that necessary for homogeneous
deformation; it is here that the difference between ‘‘generation stress” and ‘‘pro-
pagation stress” comes in, which has dominated discussions of heterogeneous
deformation for so long. From the above discussion it would seem that the only
requirement is:

do
‘rv.en ~ Tprop > 61_1’16 [64h]
/ / @ In heavily work-hardened materials, where § may be a strong function of ¢,
egs. [64g and h] no longer hold; the value of £ at the front strain-rate must be

inserted in eq. [64f].

[64£] and [64¢] neglected the ‘creep”

: i that led to
t It was later shown that the integration of [64c] tba plied one, €. A proper treatment

tion in the regime where the local strain rate is less than the ap e
d by InEg/ -8.) in both eq.[64f] and [64g]. [U.F. Kocks, “Kinetics
Volume (1981), p.219]

deforma

leads to a form in which &y must divide

of nonuniform deformation”: Prog. Mater. S, Chalmers Anniversary




7. CONCLUSIONS

AT THE time this study was undertaken, there had been intense discussions
for a number of years, both in the literature and at conferences, of various
problems in the theory of thermally activated motion of dislocations. We
were, at that time, convinced that a fair number of these problems had been
essentially solved, even though this may not have been generally accepted; we
set out to delineate and summarize those areas. Our study revealed to us a
number of additional problems that we deemed solvable; some of the
solutions we arrived at were, in the same time span, proposed by other
researchers. Finally, there were a few problems that appeared to stand out as
worth solving which had not yet been solved. At this time, we would assess
the status of some of these subproblems as follows.

Stress versus glide resistance. We consider it imperative that a clear distinc-
tion is maintained between the applied stress (an external variable and in
general a tensor) and the resistance of the material to plastic deformation (a
scalar material property, although possibly orientation dependent). The
categorization of internal stresses in this scheme is, to some degree, a matter
of taste; we consider them to be part of the glide resistance: this seems to us
more logically consistent and better for an operational analysis of experi-
ments without making any assumption about superposition laws. (Secs. 21,
22, 23))

Superposition and the plane glide resistance. While the various forces on a
straight element of dislocation due to applied stresses, internal stresses, self
stresses, and various obstacle resistances superpose linearly, this is in general
not true for the smoothed line glide resistance and the further smoothed plane
glide resistance. The latter is all that can be measured in macroscopic experi-
ments. Fairly detailed knowledge about the relative location of the various
element resistance mechanisms, and about the statistics of their distribution,
is necessary before meaningful statements on the superposition of strengthen-
ing mechanisms can be made. For the superposition of effects due to different
types of obstacles, some simple rules have been established that describe
limiting behavior. (Secs. 24, 44, 52, 53.)

Line tension and self stress. All theoretical models have, until now, used a
line tension approximation. It is well known that substantial deviations from
this assumption may exist, for example, because of the attraction between
neighboring branches of a dislocation on either side of a discrete obstacle.
These self stresses tend to lower the glide resistance from that derived from a
265




266 THERMODYNAMICS AND KINETICS OF SLIP

line tension model, more for smaller obstacles than for larger ones, and more
for attractive ones than repulsive ones. Computer calculations and useful
analytical approximations of these effects are needed and are in progress.
(Secs. 23, 24, 52)

- Elastic anisotropy. The proper combination of elastic constants to be
inserted into the flow stress formula according to any particular mechanism
has almost always a value larger than that corresponding to the shear modulus
that enters the line energy of a screw dislocation. In many cases, this may
increase the predicted flow stress by a factor of 2 or more. However, the
appropriate effective line tension that should be entered depends (especially
for stronger obstacles) on the degree of bow-out and thus on the strength of
the obstacle itself. Since the effective obstacle strength must be modified, as we
have seen, by the effects of dislocation branch interactions, the solution of the
anisotropic problem, while itself possible with present knowledge, must await
the solution of the interaction problem. (Secs. 23, 25.) :

Screws versus edges. One reason for the generally upward influence of
elastic anisotropy on the flow stress is the fact that the flow stress must always
be controlled by that kind of dislocation which is harder to move. This realiza- ,
tion is a direct consequence of the notion that the plane glide resistance
corresponds to the stress for long-range slip in each slip plane. The hardest
dislocation to move will usually be either the pure screw or the pure edge, and
different mechanisms make fairly straightforward predictions as to which it
must be. A suggestion has been advanced that this distinction alone may be,
at least in part, responsible for the important difference between planar and
wavy glide habit. (Sec. 25.)

Attractive versus repulsive obstacles. While the positive part of the element
glide resistance diagram may be identical for attractive and repulsive barriers,
they may nevertheless lead to profoundly different macroscopic behavior. In
the case of linear barriers, repulsive ones are overcome by the nucleation of a
pair of kinks, exactly like periodic ones; but attractive barriers demand the
nucleation of a high-energy dislocation loop and produce a very long-range
line glide resistance diagram. In the case of discrete obstacles, as was pointed
out above, attractive obstacles are more strongly influenced by the expected
deviations from the line tension approximation. In all cases, attractive
obstacles are more easily overcome by means of dislocation inertia than are
repulsive ones. Finally, attractive point obstacles may significantly alter the
statistical effects on the plane glide resistance (in the same way as substitu-
tional solute atoms) and thereby lead to longer-range effects. (Secs. 24, 52,21,
25)

The mechanical threshold: Jerky versus continuous glide. The maximum plane
glide resistance, i.¢. the applied stress above which equilibrium of dislocations
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on the average slip plane is impossible, is the most important parameter
describing the mechanical “state of the material”. At applied stresses above
this mechanical threshold, dislocations must move continuously, whereas
below it, glide is always jerky and long-range slip is only possible with the
help of thermal activation. At zero absolute temperature, the flow stress is
equal to the mechanical threshold, in the absence of dislocation inertia and
quantum effects. (Secs. 31, 32, 33, 41.)

The mobile dislocation density. The treatment of jerky glide as a quasi-
continuous process controlled by average waiting times implies that the
preexponential term contains all those dislocation segments actively “wait-
ing” for thermal activation, in addition to the very small number actually
running: the sum of both is the “mobile dislocation density”. It is a structural
parameter and can, in principle, not change instantaneously with changes in
applied stress. If adjustments in the mobile dislocation density do occur in a
time span smaller than that resolved in the observations, through interactions
in the same slip plane and particularly through interactions between neigh-
boring slip planes, the mobile dislocation density may be expected to depend
on the first or second power of the applied stress. Since the stress dependence
of the waiting time, i.e. the Boltzmann term, is usually considerably stronger,
measurements of the stress dependence of the strain rate do furnish the
apparent activation area quite well, in those cases. (Secs. 32, 33, 62, 63.)

Stress rate effects. In addition to the effects of stress and temperature, the
strain rate may be influenced by the rate of stress change; for example, in
stress relaxation experiments and during stress changes in creep tests. A
general rate equation for jerky glide, incorporating this effect and those due
to structure changes, has been proposed. (Secs. 33, 34, 64.)

Transients; small versus large strains. Throughout this discussion, we have
emphasized the necessity for long-range slip through average slip planes.
Experiments at very small strains, and experiments at very small times, may
reveal transient effects that can be important tools in identifying structure
parameters whose values eventually achieve a steady state dictated by the
external parameters; the mobile dislocation density is a case in point. While
the long-range-slip limit always has a well-defined meaning and obeys a-
relatively simple kinetic law with few structure parameters, it is by no means
evident that the most “instantaneous” observation one can make provides any
more basic or any more useful information. (Secs. 33, 34, 63, 64.)

Liiders front propagation. While the deformation was assumed to be homo-
geneous throughout most of this article, the special case of the steady-state
propagation of a single Luders front was shown to be easily analyzable and
useful for the determination of the rate sensitivity—even without changing
the rate. (Sec. 64.)
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Dislocation damping and inertia. The various mechanisms that have been
proposed as controlling the velocity of dislocations under positive driving
force all give similar answers around and above the Debye temperature ; the
behavior at low temperature is not well understood theoretically and not well
established experimentally. The damping is generally high enough to keep the
average dislocation velocity considerably below the speed of sound; however,
the severe variations in glide resistance across a slip plane necessitate
accelerations and decelerations of dislocations that are not always over-
damped. As a result, one should expect inertial penetration of obstacles by
dislocations and kinks in the interesting stress range, if the effective interaction
range of the obstacle is not much more than an atomic dimension, or if the
temperature is very low. (Sec. 31.)

The frequency factor and the activation entropy. For most problems of any
interest, the frequency factor in a rate equation for plastic flow does not
depend on the obstacle spacing but only on the obstacle stiffness. It is gener-
ally of the order of 10! s—1. This incorporates all entropy effects due to
vibrations of the dislocation. In addition, there may be an entropy contribu-
tion from the obstacle-dislocation interaction; its average value over the range
of the measurements should be about one or a few k, which produces an
additional factor of 10 in the preexponential that is not operationally distin-
guishable from the attempt frequency or other preexponential factors. (Sec.
42)

Activation enthalpy versus activation free enthalpy. In principle, the activa-
tion enthalpy AH is all that can be measured experimentally—and then only
if other temperature dependences of the preexponential are negligible (as they
usually are) or can be assumed to have a known form. If AH is measured over
a wide temperature range, especially extending to low temperatures, one may
be able to draw sufficient conclusions about the activation entropy for a
complete analysis. If a value of AH that was measured over a certain tem-
perature range is compared with predictions of a theoretical model, the
material constants in the model, such as the shear modulus, must be those
obtained by a straight-line extrapolation from the range of experimental
temperatures to absolute zero. In practice, all that can be reasonably handled,
and which is usually sufficient, are entropy effects due to the temperature
dependence of the elastic constants (and of the lattice constants). These effects
are completely accounted for by introducing the normalized variables o/u and
kT/ub®. The “activation energy”’ measured in such normalized variables is
AG/ub®. In these expressions, u and b are to be inserted gr temperature in the
analysis of the experiments and in the theoretical expressions. Use of the above
normalized coordinates makes all the proposed equations for converting AH
into AG unnecessary. (Secs. 41 through 44, and 61.)

The activation area: true and apparent. The true activation area is a_ geo-
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metric quantity describing the area in the slip plane between the stable and
unstable equilibrium positions of the dislocation at a given stress. It is a
theoretical quantity of interest in the derivation of the activation free enthalpy
AG. The negative derivative of AG with respect to the applied stress o is not in
general equal to this activation area; we have here called it “apparent activa-
tion area’. The differences are due to a possible dependence of the true
" activation area on the applied stress as distinct from the glide resistance; for
example, because of a dependence of the effective obstacle spacing in randomly
distributed discrete obstacles upon the applied stress. In all cases we have
investigated, the apparent and true activation areas are proportional to each
other. We know of no way of measuring the true activation area; even the
apparent activation area can only be measured if certain assumptions about
the shear-stress dependences of the preexponential terms are satisfied. Thus,
the common use of the order of magnitude of the activation area for purposes
of identifying the kind of glide-resistance mechanism involved is generally
acceptable; the use of the detailed stress dependence for a derivation of the
obstacle profile is always subject to a number of provisos. (Secs. 41, 43, 62, 63.)

The low-stress limit. At very low stresses, the contribution to the “stress
exponent” m (i.e. the inverse relative strain-rate sensitivity of the flow stress)
from the activation energy becomes linear in the stress itself. Then, contribu-
tions from the preexponential terms become important. Reverse jumps of the
dislocations are rarely of any importance because of the large difference ‘
between forward and backward activation areas. In the limit, it does give an
additional preexponential factor which is linear in stress for all glide resistance
profiles—except that the average of the element glide resistance over the
entire slip plane, which is proportional to the rate of energy storage, must
always be subtracted from the applied stress. (Sec. 45.)

Parameters describing a single set of obstacles. When low stresses are able
to produce deformation, that is when the temperature T, at which thermal
activation alone can effect the overcoming of an obstacle, is within the range
of measurements, then a good estimate of the total free energy F, (or the total
energy U,) associated with overcoming the chief obstacle to glide can be
obtained. It must be within a factor of about three either way of 1 eV for this
to be possible. Together with the flow stress at zero temperature (obtained by
extrapolation), this also gives the approximate magnitude of the average
activation area, i.e. a combined measure of the size of the obstacles and their
spacing if they are discrete. Only if the spacing can be varied can the strength

and the effective size of the obstacles be determined. A further analysis of the .

details of the temperature dependence of the flow stress is not likely to produce
much further information, since all mechanisms lead to similar macroscopic
observations in this respect. Only the shape of the top of the obstacle profile
may be determined with some degree of accuracy by measurements at very
low temperatures, unless these are masked by inertial effects. When the tem-
perature T, is outside the range of measurements, or when another high-
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temperature mechanism affects the deformation significantly, a determination
of the total activation energy F, becomes essentially meaningless because of
the uncertainty about the correct extrapolation procedure. In this case, the
maximum obstacle strength and the shape of the top of the obstacle is all that
can be deduced from experimental data, at best. (Secs. 62, 63.)

Multiple glide resistance mechanisms. The possibility that two glide resis-
tance mechanisms make important contributions to the flow stress cannot be
asserted unless at least one of the contributions stems from discrete obstacles
whose density can be varied. In this case, simultaneous measurement of flow
stress and activation area may serve to separate the two contributions. Two
mechanisms associated with the same obstacle cannot be distinguished in
principle. However, the existence of an “athermal plateaw’’, whether it is due
to a separate contribution or merely a property of the obstacle profile, can be
ascertained by the observation that the strain rate sensitivity parameter m
must go through a minimum as a function of temperature at constant strain
rate. (Secs. 44, 62.)

The lattice resistance. As an example of linear barriers, we have considered
the lattice resistance to the motion of full dislocations. We agree with, and
have further extended, the conclusion by previous workers that a wide variety.
of different models give very similar results for the stress dependence of the
nucleation energy. With regard to the kinetics of kink motion and annihila-
tion, we find the steady-state models unrealistic unless they are coupled with
a fairly high activation energy for motion of the kinks, due to a second-order
Peierls stress or due to point defects along the dislocation. Alternatively, one
must rely on strong obstacles such as dislocation nodes to determine the mean
free path of kinks; then, the strain rate is determined entirely by the nucleation
rate. (Secs. 24, 51.)

Precipitation hardened alloys. As a specific example of discrete obstacles,
we have studied the various mechanisms of particle resistance. A consistent
application of the concepts of element, line, and plane glide resistance has
shown that both the obstacle profiles for individual mechanisms and the
methods of superposing various mechanisms had not always been described
correctly. Effects of thermal activation, while not especially strong, are by no
means negligible; together with the derived nonlinear relation between ele-
ment and line glide resistance, they alter significantly the predictions about
age hardening. (Sec. 52.)

Substitutional solid solutions. Thermal activation analysis as well as recent
theoretical considerations show that the discrete obstacle concept is not
applicable to this case. While a theoretical prediction of the mechanical
threshold may be at hand, a consistent treatment of the effects of thermal
activation has not as yet been given. (Secs. 25, 52.)
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Above we have outlined our conclusions regarding the state of understand-
ing of a number of specific problems. Looking at the thermodynamics and
kinetics of slip as a whole, we find that an essentially complete and reliable
theory has been established. It makes two kinds of predictiors. On the one
hand, the theory specifies ranges of the experimental variables in which

~accurate and comprehensive observations can be expected to yield further

information on the underlying deformation mechanisms. On the other hand,
the theory allows one to delineate broad bands of mechanical properties that
are insensitive to the details of the microscopic behavior and for which
constitutive relations can therefore be specified to a fair degree of accuracy
with present knowledge.

The confidence we profess in the present state of theoretical understanding
is limited to materials in any given “mechanical state”, or having any given
metallurgical “structure”. The problems connected with changes of structure
concurrent with the plastic deformation are more difficult and are much
farther away from a satisfactory solution. This is the area, therefore, where we
feel further theoretical work is most needed.
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pre-exponential terms 253
Activation area 112,114
apparent 119, 130, 131, 149
operational 132,232
true 131
Activation distance 148,211,213
Activationenergy 211
negative experimental 251
Activation enthalpy 117,232
stress dependence 136
Activation entropy 117, 121
short range obstacles 138
stress dependence 136
Activation free energies 112
Activation free enthalpy 114
linearization 145
Activation parameters
approximate magnitudes 242
constant Qandm 233
mechanistic 248
temperature and stress dependent Q and
mkT 234
with known v, (0,T) 240
with Q(e) and m(T) 237
Activation rates 120
forward 126
Activation strain volumes 131
Activation strains 131
Activation volume 130
Activation work 112,114
apparent 132
true 132
Active slip plane spacing 97,98
Age hardening ~ 215
Anelastic deformation 18
Annealing 17
Antiphase-boundary 36
in ordered precipitates 198
Apparent activation area 112, 114, 119,
130,131, 149
Apparent activation work 132
Applied stress 10
Arrhenius term 122

Asymptotic flow stress 258
Atomic frequency 70, 71, 76
Atomic volume 76

Average driving force 86

Back extrapolation through transient 258
Back stress 14

Boltzmann factor 122

Bulge nucleation 31

Burgers vector 14,26

Configuration space 120
Constant line energy 24
Constant structure
extrapolation procedures to 255
tests at 255
Constitutive law 1
Constitutive relations 69, 101
effect of history 101
Continuous bulge on dislocation
critical nucleation configurations 180
energy to nucleate 177 )
in anti-parabolic potential 179
in cosine potential 178, 180
frequency of nucleation 188
macroscopic characteristics 193
phenomenological form of energy 187
Continuous glide 4, 68, 85
Cooperative dislocation motion 30
Cottrellcloud 31
Cottrell-Stokes law 157, 159

Damping
by dislocation flutter 73
by reradiation 77
internal 74

" Damping constant 76

Data reduction 244
Debye frequency 71
Debye temperature 76
Deceleration distances of dislocations 82
Deformation, irreversible
above mechanical threshold 19
below mechanical threshold 19
deformation resistance 12
driving force for 11

283
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Deformation resistance
due to internal stress 13
irreversible deformation 12
Dielastic interactions 23
Diffusion 2
Dipole extension by screws 64
Dipole trapping 91
Discrete kinks on dislocation, pair of:
critical nucleation configurations 185
energy to nucleate 180
" frequency of nucleation 188
in anti-parabolic potential 186
in cosine potential 186
macroscopic characteristics 193
phenomenological form of energy 187
Discrete obstacles 7, 40
and friction stress, superposition of 156
and internal stress, superposition of 156
aperiodic 54
clustered 54
frequency factor 123
Friedel statistics 53
maximum strength 43
Mott statistics 58
periodic 54
random 54
strong 59
superposition of 156, 160
thermal activation 147
weak 60
Dislocation density
mobile 89
in jerky glide. 95
running between obstacles 94
waiting at obstacles 94
Dislocation drag, measurement 74
Dislocation dynamics 68
Dislocation element 6
Dislocation glide 14
Dislocation lines, spacing of kinks along
176
Dislocations
acceleration distance 80
deceleration distances 82
dynamic behaviour 83
edge, effective mass of 72
electron interactions 73
element of 6
equation of motion for 69
extended 65
forest 59
mass of 71
overdamped motion 80
phonon interactions 73
stopping distance §2
terminal velocity 79
thermal and mechanical release 93
Dissipation function 11

Dissociation
inslip plane 65
out of slip plane 67
Double kink nucleation 37
Drag coefficient 73, 76
effect on dynamic threshold 84
Drag force 70
Dragging obstacles
Driving force 17
average 86
irreversible deformation 11
Dynamic behaviour of dislocation 83
Dynamic pile-up 30, 37
Dynamic structure 257
Dynamic threshold 82
effect of drag coefficient 84

7,64

‘ Effective line tension 48

Effective mass of edge dislocation 72
Effective obstacle spacing 58, 149
Effective resisting force of particle 203,214
Effective stress 13, 86
Einstein frequency 71
Elastic constants, entropy and temperature
dependence 119
Electron scattering - 73
Element of dislocation 6
Element glide resistance 3,6, 7, 19
Empirical laws 103
physical restrictions
Energy
dissipated 115
of dipole 64
to nucleate continuous bulge 177
anti-parabolic potential 179
cosine potential 178, 180
to nucleate pair of discrete kinks
186
Energy-storing barrier 36
Entropy
activation See Activation entropy
and temperature dependence of elastic
constants 119
rate of production 12
Equation of motion for dislocation 69
Equations of state 8
mechanical 101
Equilibrium 6-67
deviation from 11
mechanical 10
thermal 8,10, 112
thermo-mechanical 10
unstable and stable states 114
Equivalent ribbon-like obstacle 214
Extended dislocations 65
Extrapolation procedures to constant struc-
ture 255

108

180,
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Fisher plots 236
Flow, steady state 69
Flow stress as structure parameter 155
Flow stress-particle size curves 219
Flow stress-temperature diagrams
age hardenable material (figure) 218
non-age . hardenable material (figure)
218
Fluctuation models, kinetic 126
Fluctuations, in energy 113
in thermal equilibrium 112
Force
driving 11,17,86
inertial 70
net 17
on obstacle 43
Force-distance curve 21, 149
core energy difference (figure) 210
disordering in particle (figure) 208
friction stress in particle 208
interface step production 207
local mechanisms 200
misfit stresses .
attractive (figure) 209
repulsive (figure) 209
superposition of two mechanisms (figure)
212
Forest dislocation cutting 172
Forest dislocations 59
Free energy change
instantaneous 12
time average 12
Frequency factor 120-3
Friction, internal 75
Friction stress
and discrete obstacles, superposition of
156
local interaction mechanisms 197
Friedel statistics 53, 55,222

Gibbs free energy of activation 114
Glide 16
continuous 4, 68, 85
dislocation 14
jerky 4,9,69, 85,93,95
reverse 30 .
Glide resistance 6, 16, 19
element 3,6,7,19
line 3,7,21
plane 3,7,29,37,53
discrete obstacles 53
due to particles 203
linear barriers 37
smoothing 38
solid solution 62
varying 85
Glide resistance profile 116
phenomenological descriptions 141

Glide strain
heterogeneous matter 16
homogeneous matter 16

) Guinier-Preston zones 124

Hall-Petch relation 38
Helmholtz free energy 6, 113-14
High temperature limit 163

Individual particle resistance mechanisms
(table) 204
Inertial effects 79
Inertial force 70
Instantaneous stress change 258
Interaction between kinks 37
Internal damping 74
Internal friction 75
Internal stress 10,13, 14, 139
and discrete obstacles, superposition of
156
Irreversible deformation
above mechanical threshold 19
below mechanical threshold 19
deformation resistance 12
driving force for 11
entropy change 11
Isolated linear barrier 171

Jerky glide 4, 69, 85,93, 95
Jogs 64

Kinematic relations 69
Kinetic fluctuation models 126
Kinetic law 2
Kinetic model of activation 121
Kinetics 68-109
Kink-kink interaction 37
Kink motion 40
Kink pile-up 40
Kinks
discrete See Discrete kinks
interaction between 37
mass of 71
mean free path 191
spacing along dislocation lines 176

Lattice resistance 173
anti-parabolic potential 174
cosine potential 173

Line energy

closed hoop 26
dislocation 24

edge dislocation 25 .
fcc, bec and hep metals 26
screw dislocation 25
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Line glide resistance 3, 7,21
Line tension 24
anisotropic, for some metals 27
edge dislocation 27
effective 48
edge dislocation 50
screw dislocation 50
orientation dependence in isotropic elas-
tic material 51
screw dislocation 27
Line torques 50
Linear barriers
attractive 31
isolated 31,171
periodic 31, 36
repulsive 31
Linearization of activation free enthalpy
145
Local interaction mechanisms
activation distance 211
activation energy 211
core energy difference 199, 204
disordering 198
disordering in particle 204
effective resistive force (figure) 214
friction stress 197
friction stress in particle 204
interface step 204
misfit stresses 198, 204
modulus difference 200, 204
stacking fault energy difference 200
stress dependence of activation free
enthalpy 215
surface step production 201
temperature dependence of flow stress
215
Lomer-Cottrell lock 31
Long-range mechanism 236
Low stress limit 163
Liiders front propagation 261

7,30,171

Mass of dislocations 71
Mass of kinks 71
Maxwell relations for plastic flow 137
Mean free path 91
kink 191
with strong obstacles 191
without strong obstacles 191
Mechanical equation of state 101
Mechanical equilibrium 9
Mechanical threshold 3,18
superposition 225
Mechanistic activation parameters 248
Misfit stresses due to precipitation 198
Mobile dislocation bunching 39,40
Mobile dislocation density 4,89
jerky glide 95
Model parameters 231
Mott statistics 55, 58,222

SUBJECT INDEX

Nabarro-Herring creep 12

Negative experimental activation energies
251

Net force 17

Non-linear drag 70

Non-local interactions 24

Normalized variables 238

Nucleation rate of kinks and bulges 187

Obstacle compliance 46
Obstacle profile 2, 149
dependent on temperature 132
long range obstacles 141
scaled by modulus and Burgers vector
135
short range obstacles 141
two-stage 138
Obstacle spacing, effective 48,149
Obstacle stiffness 123
Obstacle strength 148
Obstacles
aperiodic 54
clustered 54
discrete See Discrete obstacles
dragging. 7,64
equivalent ribbon-like 214
forceon 43
periodic 54
random 54
relative strength 56
shortrange 251
activation entropy 138
strong 59
superposition of different
229
superposition of two related 149
weak 60
Operational activation area 132,232
Operational parameters 230,231
Orowan bypassing 211
Orowan looping 47,124
Orowan strength 216
Overdamped motion of dislocations 80

224, 226, 227,

Parelastic effects 24

Particle resistance 196, 203,214
Peierls barriers 36

Peierls energy 173

Peierls stress 174

Percolation criterion 56
Periodic linear barriers 36
Phonon drag, theories 75
Phonon scattering 73

. Phonon viscosity 73,77

Plane glide resistance 3, 7,21,29,37,53
discrete obstacles 53
due to particles 203
linear barriers 37
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smoothing 38

solid solution 62
Plane spacing, active slip 97, 98
Plastic flow, Maxwell relations for 137
Point obstacle resistance 221
Preexponential, temperature dependence

232

Pseudo-Peierls stress 67, 171

Quantum effects in thermal activation 124

Rate effects in superposition of obstacles
227

Rate-equation 1

Rate insensitive materials, activation analy-
sis 243,250

Reaction coordinate 121

Reaction path 121

Recovery 17,99

Relative obstacle strength 56

Residual stress 14

Resolved shear stress 16

Reverse glide 30

Reverse jumps in thermal activation 164

Reversible heat flow 8

Reversible work 8

Saddle point 121
Scattering radius 75
Second Law restriction 115
Self stress 3, 22,24
Separation of mechanisms 245
Separation of partials at obstacles
in edge dislocation 66
in screw dislocation 66
Shape ofabody 7
Shear 15,16
Shear modulus 16, 76
Shear stress, resolved 16
Short-range mechanism 236

‘Short range obstacles 251

Size of body 14

Slip plane, dissociation in 65

Slip plane obstacles 2

Smoothing of plane glide resistance 38
Solid solution, plane glide resistance 62
Solution hardening 172

Spectrum of obstacle spacings 53
Spectrum of obstacle strengths 53
Speed of sound 70, 71, 76

Stacking fault energies 66

State variables 8

Static structure 257

-Steady-state flow 2, 69

Stopping distance of dislocation 82

Stored energy 17
permanent 17
temporary 17

Strain increment

average 9
local 10
Stress
average 13
back. 14
effective 13,86
friction ‘
and discrete obstacles, superposition of
156

local interaction mechanisms 197
internal 10, 13, 14, 139 )
and discrete obstacles, superposition of
156
local 10,13
misfit, due to precipitation 198
residual 14
self 3,22,24
shear, resolved 16
volume average 10
Stress change, instantaneous 258
Stress dependence
of activation enthalpy 136
of activation entropy 136
ofyo 253
of thermal activation 129
Stress limit, low 163
Stress relaxation 260
Strong obstacles 59
Strong solutes 222
Structure-change 2,255
equations 1
Liders fronts 261
stress relaxation 260
work hardening 256
Structure parameters 1
Structure variables 69, 241
Superposition of different obstacles 224
obstacles of different strength 226 -
obstacles of same strength 226
rate effects 227 :
thermal and athermal obstacles 229
Superposition of discrete obstacles
and friction stress 156
and internal stress 156
of two sets 160
Superposition of mechanical thresholds
225
Superposition of two related obstacles 249
System 22

- Temperature dependence
of preexponential 232
of sheer modulus for aluminium 118
Terminal velocity of dislocations 79
Tests at constant structure 255
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Thermal activation 110-70

discrete obstacles 147

quantum effects 124

reverse jumpsin 164

stress dependence 129

Thermal analysis 2

Thermal and athermal obstacles, super-
position of different 229

Thermal and mechanical release of dis-
locations 93

Thermal equilibrium 8, 10

fluctuationsin 112

Thermo-elastic effect 77

Thermo-mechanical equilibrium 10

Transition state theory 121, 125

True activation area 131

True activation work 132
Two-stage obstacle profiles

Varying glide resistance 85
Virtual variations 11

Wavyslip 63

Weak obstacles 60
Weak region 38

Work hardening 99, 256

Zeldovich factor 190
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